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particular, we have shown that fractal functions are an effective tool for
S representing natural shapes and provide a good basis for recovering 3-D shape 4

from the shading and texture in a single image. For scenes containing
men-miade objects, we have found ways of using straight edges to recover
the 3-D orientation of surfaces from a single view, and reason about the
shape of an object from partial information in multiple views. We have built
a new and powerful LISP-mchine-based environment for use in image understand-
ing research, and are putting together high-performance systems for stereo
compilation, feature extraction, and linear delineation.,
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1. INTRODUCTION

The goal of this research program is to obtain solutions to fundamental problems in -*

computer vision, particularly to such problems as stereo compilation, feature extraction,
linear delineation, and general scene modeling that are relevant to the development of an
automated capability for interpreting aerial imagery and the production of cartographic

* products.
To achieve this goal, we are engaged in investigations of such basic issues as image

matching, partitioning, representation, and physical modeling (shape from shading, texture,
and optic flow; material identification; recovery of imaging and illumination parameters such 0
as "vanishing points," "camera parameters," illumination source location; edge classification;
etc.). However, it is obvious that high-level, high-performance vision requires the use
of both intelligence and stored knowledge (to provide an integrative framework), as well
as an understanding of the physics and mathematics of the imaging process (to provide

P the basic information needed for a reasoned interpretation of the sensed data). Thus, a . . .
significant portion of our work is devoted to developing new approaches to the problem
of "knowledge-based vision." Finally, vision research cannot proceed without a means
for effective implementation, demonstration, and experimental verification of theoretical
concepts; we have developed an environment in which some of the newest and most effective
computing instruments can be employed for these purposes.

2. KNOWLEDGE BASED VISION: the Construction of an
Expert System Control Structure for Stereo Compilation and
Feature Extraction.

Our intent in this effort is to develop a system framework for allowing higher level
knowledge to guide and integrate the detailed interpretation of imaged data by autonomous
scene analysis techniques. Such an approach allows symbolic knowledge, provided by higher-
level knowledge sources, to automatically control the selection of appropriate algorithms,
adjust their parameters, and apply them in the relevant portions of the image. More -
significantly, we are attempting to provide an efficient means for supplying and using

qualitative knowledge about the semantic and physical structure of a scene so that the
machine-produced interpretation, constrained by this knowledge, will be consistent with
what is generally true of the overall scene structure, rather than just a good fit to loclly
applied models. .

An important component of our approach is to design a means for a human operator to
simply and effectively provide the machine with a qualitative scene description, in the form
of a semantically labeled 3-D "sketch." This capability for effective communication between
a human and the machine about the three-dimensional world requires both appropriate
graphics tools and an ability on the part of the machine for both spatial reasoning and .- f _
some semantic "understanding." The importance of this work derives from the fact that a
major difficulty in automating the image-interpretation process is the inability of current
computer systems to deduce, from the visible image content, the general context of the scene
(e.g., urban or rural; season of the year; what happened immediately before, and what will

L 1
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happen immediately after, the image was viewed by the sensor) - the knowledge base and

reasoning required for such an ability is well beyond what the state of our art can hope to
accomplish over (at least) the next 5 years. Thus, our work is intended to provide an interim

means by which a human can supply, a task-oriented program, the high level overview it .

needs for its analysis, but cannot acquire by itself.

Two of our major integrative efforts are directly concerned with the knowledge-based

vision problem:

One effort, integrating our work in stereo compilation and physical modeling, is the
construction of a rule-based system with a library of processes and activities, which can
be invoked to carry out specific goals in the domain of cartographic analysis and stereo

reconstruction. This work is based on results described below, but the integrative framework
is still being developed and will not be described in this report.

The second effort, described in a following section on feature extraction, is a restricted - '- -

version of the concept discussed above (it employes contextual and semantic knowledge, but

does not address the issues of qualitative reasoning nor 3-D spatial understanding). - -

3. DEVELOPMENT OF METHODS FOR MODELING AND
USING PHYSICAL CONSTRAINTS IN IMAGE L llA-

INTERPRETATION.

Our goal in this work is to develop methods that will first allow us to produce a sketch

of the physical nature of a scene and the illumination and imaging conditions, and then
permit us to use this physical sketch to guide and constrain the more detailed descriptive L, JL--

processes - such as precise stereo mapping.

Our approach is to develop:
* models of the relationship between physical objects in the scene and the intensity patterns
they produce in an image (e.g., models that allow us to classify intensity edges in an image
as either shadow, or occlusion, or surface intersection, or material boundaries in the scene), L -
-models of the geometric constraints induced by the projective imaging process (e.g., models . .

that allow us to determine the location and orientation of the camera that acquired the -A-

image, location of the vanishing points induced by the interaction between scene and camera,
location of a ground plane, etc.), and

* models of the illumination and intensity transformations caused by the atmosphere, light
reflecting from scene surfaces, and the film and digitization processes that result in the
computer representation of the image.

These models, when instantiated for a given scene, provide us with the desired
"physical" sketch. We are assembling a *constraint-based stereo system" that can use this
physical sketch to resolve the ambiguities that defeat conventional approaches to stereo
modeling of scenes (e.g., urban scenes or scenes of cultural sites) for which the images are

widely separated in either space or time, or for which there are large featureless areas, or a

significant number of occlusions.

A summary of some of our current work in the area of modeling and using physical

constraints is presented below.

2
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Rectilinear Forms. Images of cultural scenes, such as building complexes, typically con-
tain a significant amount of linear structure. We have developed an effective computational
technique for recovering 3-D interpretations from a single 2-D image in many such cases. It
works by finding a basis for a vector space suitable for quantifying spatial relations, while
satisfying constraints imposed by linear features in the image. Given three image lines that
are assumed to be perspective projections of mutually orthogonal scene features, the method
backprojects the lines into three-dimensional scene space, generating (potentially) all pos-
sible combinations of line orientations. It selects the combination that is "most orthogonal"
by maximizing the triple product of three unit basis vectors, using the method of steepest
descent. In general, two solutions are found, and the correct one can be chosen by relating
the solutions to knowledge of the vertical direction. A more complete description of this
work is presented in Barnard [1984a] (Appendix A).

Inductive Approach. The technique discussed above has led us to investigate a new class . 9.
of computational methods for the interpretation of single images. These methods constitute
an inductive approach because they explicitly recognize that the available data (the image)
are insufficient to make a well-founded logical interpretation; that is, many interpretations
are possible, but only one is preferred. Specific prior models cannot account for the general
power of such perception in the case of a human observer (although prior models are certainly
used when available). To be truly general purpose, machine vision must be able to mimic this
amazing human ability. The inductive approach selects interpretations that are "simplest"
in some sense. While it does not preclude the use of specific prior models, it emphasizes
the use of abstract generic models, such as parametric curves and surfaces. One measure of
simplicity we have considered is based on information-theoretic considerations. This work
will be described in a report by Barnard [1984b].

Optic Flow. In the optic flow paradigm, a moving observer is normally able to interpret a
time sequence of images as an implicit description of a static scene. In principle, the images
can be matched point-by-point and the motion of the observer can be deduced by exploiting
the constraint that the scene is fixed. In practice, this is exceedingly difficult to achieve,
both because point features are rare and because the methods are very sensitive to small
matching errors.

We have developed an alternative optic-flow method that exploits the often available
information about the rotation of the observer. Knowing the observer's rotation greatly
simplifies the problem of matching successive images, but, since all the useful information
that can be derived from the sequence is due to the translation of the observer, it does not
significantly sacrifice generality. The major advantage to translation-only optic flow is that
curvilinear image features can be matched by exploiting a constraint that is essentially the

same as the epipolar constraint in stereo interpretation. This work is still in progress.

Spatial Reasoning from Line Drawings of Polyhedra. Construction of a three-
dimensional "sketch" is one task faced by the user of an interactive image understanding
expert system. An urban scene typically contains buildings and other objects that can be
modeled as planer-faced polyhedra. An effective way for the user to create 3-D sketches
from multiple views of such objects has been devised.

The system requires two or more line drawings of a polyhedral scene from arbitrary

3
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vantage points. These line drawings may be obtained from a freehand sketch, by tracing the
edges in several photos, or from the output of an automatic edge detector. A "wireframe"
model of the objects is obtained by back-projecting the line drawings. Labels of solid or
vacant space are then assigned to all spatial regions defined by the wireframe using an 0
iterative constraint propagation algorithm. The result is a data structure that captures the
volumeti;c structure of the objects depicted, which can then be used to support hidden-line
elimination and other volumetric operations upon the object. This work is described in
Strat 11984a] (Appendix B). .

Determining The Imaging Geometry from a Camera Transformation Matrix.
Many scene analysis algorithms require knowledge of the geometry of the image formation
process as a prerequisite to their application. When the imaging situation can be controlled
or measured directly, the needed parameters can be determined; however, in the case of
uncalibrated images, or photographs whose history is unknown, the necessary parameters
are not available. In these cases, an alternate method of inferring the imaging situation
from the correspondence between a small set of image and object points is required.

One approach has been to compute the imaging geometry directly from the constraints
provided by the known data points. Partial information such as the camera's focal length
or the location of the piercing point in the image can be used to reduce the number of
data points needed. A second approach consists of two steps. First, the known data points
are used to compute a 4x4 homogeneous coordinate transformation matrix that captures
the entire transformation from object point to image point. An established technique for
this computation involves the least squares solution of a set of simultaneous linear equations
from six or more known correspondences. The goal of the second step is to derive the various "
parameters of the image formation process from the transformation matrix. This problem --.

can be posed as a system of nonlinear equations whose solution had required iterative
methods. Recently, Ganapathy 119841 published the first noniterative solution.

Research performed at SRI has also produced a noniterative solution (Strat [1984b]

[Appendix C]). By reasoning about the geometric constraints inherent in a camera transfor-
mation matrix, a simple, easily understood method of determining the various parameters .

is obtained. Thr'ough a series of geometric constructions, the camera's location and orien-
tation, along with the piercing point and the relations between the focal length and scale
factors, can be determined. The method relies purely on spatial reasoning about geometric
constraints and does not involve an intuitively opaque matrix decomposition. Furthermore,
its sensitivity to errors can be studied geometrically, allowing a clear understanding of the
conditions that lead to inaccurate decompositions. The technique has been successfully
applied to both synthetic imaging situations and real photographs.

4. STEREO COMPILATION: IMAGE MATCHING AND L
INTERPOLATION

We are implementing a state-of-the-art stereo system that produces dense range images
given pairs of intensity images. We plan to use it both as a framework for our stereo research,
and as the base component of an expert system concerned with 3-D compilation.

4 . .
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There are five components of this stereo system: a rectifier, a sparse matcher, a dense
matcher. an interpolater, and a projective display module. The rectifier accepts estimates
of the parameters and distortions associated with the imaging process, the photographic
process. and the digitization. These parameters are used to map digitized image coordinates
onto an ideal image plane. The sparse matcher performs two-dimensional searches to find
several matching points in the two images, which it uses to compute a relative camera model.
The dense matcher tries to match as many points as possible in the two images. It uses the
relative camera model to constrain the searches to one dimension, along epipolar lines. The
interpolater computes a grid of range values by interpolating between the matches found
by either the sparse or the dense matcher. The projective display module allows interactive
examination of the computed 3-D model by.generating 2-D projective views of the model
from arbitrarily selected locations in space.

The current system, which runs on the VAX/11-780 in C, is described in Hannah [19841
(Appendix D). At present, the system produces relatively sparse 3-D information, even in its
dense matching mode. Often 3-D data are required that are more closely spaced than can
be provided by the stereo matching process. Further, there may be areas of the images that
cannot be matched due to noise, insufficient information, and occlusions; this will produce
holes in the dense matched data that must be filled in. In either case, interpolation is
necessary to provide 3-D data between matched points.

Interpolation. We are currently exploring two different schemes for interpolation. One
is a global approach, in which all of the 3-D information available is used to find the
interpolated value for a given point. (This approach is described in Smith [19841 [Appendix
EJ.) The second approach is a local one, which only uses the data in the neighborhood t. .
of the point to be interpolated. The global approach produces a functional description
that can be differentiated analytically to determine slope and other surface attributes; the
local approach is most useful in the context of verifying the plausibility of the matches by
comparing the data from the stereo images after projection onto this surface. The local
approach is being used in the context of a hierarchical matching scheme described below. L....t_.

Matching. In a parallel research effort employing our Lisp Machines, we are exploring a
hierarchical technique for developing a regular, dense grid of matched points. This technique
does appropriate warping of the images between each level of the hierarchy, to account for
differences in perspective between the two images as predicted by the model. As a part of
this effort. local interpolation techniques have been developed to fill in holes in the model
before proceeding from level to level.

The Lisp Machine implementation includes a sophisticated terrain display package,
which permits the user to interactively designate a flight path through the 3-dimensional

model derived from a pair of images; the system then creates a "movie" (a sequence of either _
monocular or stereo views) of the terrain as the user "flies" along the path above the terrain.
This package is useful not only for assessing the quality of the derived model, but also for
tasks in which a prediction of the appearance of the scene from arbitrarily specified points
of view is desired, as when an observer is moving through mapped terrain. This work is
described in Quam [1984] (Appendix F).

-. -. . . . . . . . . .. . . . . . . . . . . . . . . ."."-.. . . .
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Evaluation. We now have available, on our VAX (Testbed) and Lisp Machines, some of

the most advanced stereo matching systems developed by the lU community. As a part of
our stereo research effort, we plan to run several calibrated data sets through these systems
to determine the relative strengths and weaknesses of the various methods, including area
correlation, hierarchical warped matching, edge matching, and edge/intensity matching.

5. THE REPRESENTATION OF NATURAL SCENES

Our current research in this area addresses two related problems: (1) representing
natural shapes such as mountains, vegetation, and clouds, and (2) computing such descrip--
tions from image data. The first step towards solving these problems is to obtain a model
of natural surface shapes. - _

A model of natural surfaces is extremely important because we face problems that - -
seem impossible to address with standard descriptive computer vision techniques. How, for
instance, should we describe the shape of leaves on a tree? Or grass? Or clouds? When
we attempt to describe such common, natural shapes using standard representations, the
result is an unrealistically complicated model of something that, viewed introspectively, .
seems very simple. Furthermore, how can we extract 3-D information from the image of - - 0
a textured surface when we have no models that describe natural surfaces and how they
evidence themselves in the image? The lack of such a 3-D model has restricted image texture
descriptions to being ad hoc statistical measures of the image intensity surface.

Fractal functions, a novel class of naturally arising functions, are a good choice for _______

modeling natural surfaces, because many basic physical processes (e.g., erosion and aggrega- -

tion) produce a fractal surface shape and because fractals are widely used as a graphics tool '. "

for generating natural-looking shapes. Additionally, in a survey of natural imagery, we
found that a fractal model of imaged 3-D surfaces furnishes an accurate description of both :-. .
textured and shaded image regions, thus providing validation of this physics-derived model
for both image texture and shading.

Progress relevant to computing 3-D information from imaged data has been achieved
by use of the fractal model. A test has been derived to determine whether or not the fractal
model is valid for a particular set of image data, an empirical method for computing surface .

roughness from image data has been developed, and substantial progress has been made
in the areas of shape-from-texture and texture segmentation. Characterization of image
texture by means of a fractal surface model has also shed considerable light on the physical
basis for several of the texture-partitioning techniques currently in use and made it possible
to describe image texture in a manner that is stable over transformations of scale and linear
transforms of intensity.

The computation of a 3-D fractal-based representation from actual image data has
been demonstrated. This work has shown the potential of a fractal-based representation
for efficiently computing good 3-D representations for a variety of natural shapes, including
such seemingly difficult cases as mountains, vegetation, and clouds.

This research is expected to contribute to the development of (1) a computational theory - -

of vision applicable to natural surface shapes, (2) compact representations of shape useful

6
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for natural surfaces, and (3) real-time regeneration and display of natural scenes. We also
anticipate adding significantly to our understanding of the way humans perceive natural

scenes.

Details of this work can be found in Pentland 11983 and 1984 (1984, Appendix G).

6. FEATURE EXTRACTION: SCENE PARTITIONING, AND
LABELING t

Our efforts in image partitioning and labeling have advanced along two fronts: we
have developed a goal-directed texture-based segmentation algorithm and have studied
knowledge-based control concepts required to integrate this with other image feature-
extraction techniques.. .

The SLICE goal-directed segmentation system combines knowledge of target textures or
signatures with knowledge of background textures by using histogram-similarity transforms.
Regions of high similarity to a target texture and of low similarity to any negative texture ex-
amples are found. This use of semantic knowledge during the segmentation process improves
segmenter performance and focuses segmentation activity on material types of greatest in- •
terest. (The system can also be used for goal-independent texture segmentation by omitting L .

the similarity-transform computations.) Development of this segmentation technique is es-
sentially complete; all that remains is to integrate it into the more general feature-extraction ... :
system described below. Performance of the SLICE segmentation algorithm is documented
in Laws [1984] (Appendix H).

The KNIFE (knowledge-based interactive feature-extraction) system is intended to solve
problems in image segmentation, feature extraction, material identification, and feature
classification. (Image segmentation and feature extraction partition an image into mean-
ingful units; material identification and feature classification label those units.) Experience
has shown that these tasks cannot be carried out adequately in isolation. Image segmenta-
tion, for instance, cannot produce a meaningful partitioning unless it is guided by semantic
criteria from material identification and feature classification.

The KNIFE feature-extraction system will combine a data base of recognition rules
(using shape. texture, and context) with recursive segmentation and other techniques to find
and label scene features. Initially selected image regions, based on image brightness and
texture, are resegmented and refined to locate recognizable objects (e.g., roads, fields, and
buildings). The control process assigns initial labels for each region, and then recursively -

analyzes those regions that might contain useful substructure. The choice of regions to
split or merge is influenced by analysis goals rather than solely by statistical properties of
the image data. The segmentation and interpretation will thus proceed at unequal rates
or to different depths in separate scene regions, with differing types of knowledge applied
at successive stages in the analysis. Objects detected by other means (user interaction or
direct object recognition) may override the normal interpretation cycle.

We are concentrating our development efforts on goal-directed recursive segmentation >..

and on related display, query, and editing tools. Among these tools are display of input -
images and segmentation maps; readout of region descriptions and relationships; and com-

. " .



W .P .. ~ ,, .

mands for interactively designating, splitting, merging, and classifying regions.

The control process is a production system that looks for applicable rules in the rule
base. Such rules will be placed on a prioritized queue of tasks to be performed. When
executed, they may query the user, invoke image analysis subsystems, or affect the behavior
of tb e control process itself.t'rttpedt

Besides the rule bae and the input or derived imagery, the system will have twopincipal data structures. Tbase wre the sketch data base, and the prototype data base. i:": i-

The sketeh data bow a m v asbe system blackboard, storing all the information
relevant to the cwrent imap. The prototype data base will be a semantic network witht
nodes string object propertims ad pointm to image examples.

The system m bng dwlopve on the VAX-based SRI Image Understanding (IU)
Tesmbed. The basis for the system's data analysis capabilities will be the body of software
currently accumulated is the tethed and other programs now being developed, such as the ------- --

SLICE goal-directed segmentation system discussed above.

7. LINEAR DELINEATION AND PARTITIONING

A basic problem in machine-vision research is how to produce a line sketch that
adequately captures the semantic information present in an image. (For example, maps
are stylized line sketches that depict restricted types of scene information.) Before we can
hope to attack the problem of semantic interpretation, we must solve some open problems
concerned with direct perception of line-like structure in an image, and with decomposing
complex networks of line-like structures into their primitive (coherent) components. Both
of these problems have important practical as well as theoretical implications.

For example, the roads, rivers, and rail-lines in aerial images have a line-like appearance.
Methods for detecting such structures must be general enough to deal with the wide variety
of shapes they can assume in an image as they traverse natural terrain.

Most approaches to object recognition depend on using the information encoded in the * S
geometric shape of the contours of the objects. When. objects occlude or touch one another,
decomposition of the merged contours is a critical step in interpretation.

We have made significant progress in both the delineation and the partitioning prob-

lems. Our work in delineation (Fischler and Wolf (19831) is based on the discovery of a new
perceptual primitive that is highly effective in locating line-like (as opposed to edge-like)
structure.

One approach to decomposing linear structures into coherent components (Fischler and
Bolles [19831) is based on the concept that perception is an explanatory process - acceptable
precepts must be associated with explanations that are believable: They must be complete
(i.e., they explain all the data), simple (i.e., both concise and of limited complexity), and
stable (i.e., they must not change under small perturbations of either the imaging conditions . . .
or the decision algorithm parameters).

A second approach to the partitioning problem, which also addresses the problem of
qualitative matching of linear structures (Smith and Wolf [19841 [Appendix 11), focuses on the
concept of simplicity as the basis for making perceptual decisions. Given a set of primitives .
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as the basis for description, each possible description of a set of data is evaluated as to
how accurately it describes the data and how "long" a description is required (a natural
conversion from accuracy to descriptive length is provided). The shortest description is
chosen as being correct.

These new delineation and partitioning algorithms have produced excellent results in " -
experimental tests on real data. Our continuing work in this area focuses on theoretical, as
well as performance, issues.

8. COMPUTING ENVIRONMENT FOR IU RESEARCH

Previous reports (e.g., Hanson and Fischler [19811) describe the VAX 11/780 testbed
environment we created for evaluation, demonstration, and transfer of IU technology. A
significant recent addition to this system is based on the Symbolics 3600 LISP machine. . .
Documentation of this new system is still incomplete, but as noted in section four of this
report (Stereo Compilation: matching), applications recently considered beyond the state-of- . - . .

the-art on comparably priced hardware, have already been programmed and demonstrated
(Quam [1984]).
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Abstract

If it is possible to interpret an image as a projection of rectangular forms, there
is a strong tendency for people to do so. In effect, a mathematical basis for a
vector space appropriate to the world, rather than to the image, is selected. A
computational solution to this problem is presented. It works by backprojecting
image features into three-dimensional space, thereby generating (potentially) all
possible interpretations, and by selecting those which are maximally orthogonal.
In general, two solutions that correspond to perceptual reversals are found. The
problem of choosing one of these is related to the knowledge of verticality. A .
measure of consistency of image features with a hypothetical solution is defined. In . 9
conclusion, the model supports an information-theortic interpretation of the Gestalt
view of perception.
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1. Introduction

Why do we see the pattern of lines in Figure I as a right-angled corner? First, we
must recognize that this is an Illusion. (Let's call it the "right-angle illusion.") -

There is no strict, logical reason to interpret this figure in such a way: there
are infinitely many three-dimensional spatial configurations of line segments that
could have "explained" it. Nevertheless, we do see it in a special way - thus,
we experience an illusion. Is it possible to understand this from a computational
point-of-view?

The right-angle illusion does not depend on the three lines meeting at a common
vertex. The pattern in Figure 2 evokes a comparable impression and it has no
common vertex. The illusion is strengthened by rotating the pattern so that one
line can be seen as vertical and the others as horizontal. This can be checked
by rotating Figure 2 ninety degrees. Does the illusion still seem as vivid? On
the other hand, more complex patterns, such as Figure 3, do not necessarily lead
to right-angled interpretations, but, in these cases, the viewer is given additional
constraining information beyond three line segments. If three line segments form . ..

. two very acute angles, such as in Figure 4, they will not be seen as right-angled,
but then no such interpretation is geometrically possible.

In summary, it seems that, in the absence of additional information, three non-
colinear line segments will be seen as perpendicular lines in space, if such an in-
terpretation is possible. There is strong experimental evidence for this hypothesis. ' •
Attneave and Frost [1 found that the perceived orientations of lines were highly
predictable from hypothetical orientations implied by right-angled interpretations.
Perkins 121 tested the ability to discriminate between right-angled and non-right-
angled forms. He found that when an image could be explained by a right-angled - . .

interpretation it would almost always be perceived in that way.

At first, one might think the right-angle illusions too sparse to be meaningful.
They contain so little information. Could they ever compare to real visual expe-
rience, with its abundance of data? Consider the familiar Ames-room illusion 131
(Figure 5). A weird, trapezoidal room is contrived to look normal (i.e., rectangular)
from a particular point-of-view. Objects in the room are seen incorrectly: a man
on one side of the room appears to be a midget, while another on the opposite side
appears to be a giant. The Ames room illusion and the right-angle illusion have
one critical point in common: in both cases, rectilinear perceptions are constructed

'I. from too little evidence. In the Ames room, furthermore, the effect is so strong
L :that it dominates other important information for depth perception (such as size

constancy). In an effort to make the distorted room look normal, our perception
creates an incorrect geometrical interpretation that implies incorrect metric rela-
tions between objects. In effect, we perceive the space in which the room and the ..

objects exist, rather than perceiving the room and the objects in isolation.
In this sense, the right-angle illusion is simply a minimal case of the Ames room. L

3
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Figure 1: A Right-Angle Illusion

I. - . .-

Figure 2: A Common Vertex is not Required

Figure 3: A Tetrahedron

Figure 4: A Pattern that Does Not Admit a Right-Angled Interpretation

The difference between the two is that the Ames room contains abundant infor-
mation for a rectilinear interpretation, whereas a pattern of three line segments
contains the bare minimum. Any three mutually orthogonal lines from the Ames
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room will produce an acceptable right-angle illusion, and, furthemore, all these illu-
sions will be consistent in the sense of aligning with the natural coordinate system S
of the (imagined) room.

There are two reasons to be interested in this problem. First, a solution might
suggest fundamental principles of perception. Human perception is an odd, com-
plex, but remarkably consistent and efficient process. It "reasons" from incomplete
evidence and almost never makes a serious error. Understanding this peculiar (and
awesome) ability is the central task of vision research [41. A second, pragmatic
reason is that these patterns are quite common in images of natural scenes (see
Figure 6). An algorithm that could make sense of them could contribute a basic
capability to a larger machine vision system.

An early attack on a similar problem was directed at the so-called "blocks world."
(See Mackworth 151 for a good summary of this line of research.) In a paper that
pioneered the field of scene analysis, Roberts described a system for recogniznog a
small collection of simple, generic polyhedral shapes 161. Whereas Roberts' meth-
ods produced complete metric descriptions of scenes, the blocks-world work that
followed was aimed at segmentation and qualitative description. The methods were ...
fundamentally syntactic and viewed the problem of blocks-world interpretation as
a matter of parsing line drawings into allowable configurations of line and vertex
types. The simplification of orthographic projection was introduced, and the effects
of perspective were considered irrelevant. To the extent that metric constraints were
used [71, [81, they were relatively weak and did not generalize in a straightforward

way to perspective.
The approach presented here is quite different. A right-angle illusion, or a more

complex image of an Ames room, or a blocks-world scene, or a natural scene such as
Figure 6, imply certain interpretations for geometrical reasons alone. Specifically,
intepretations that are in some sense "orthogonal" are preferred. A method for
finding such interpretations for right-angle illusions will be presented. The approach
is to seek a three-dimensional description that simultaneously accounts for the two-
dimensional figure and the three-dimensional phenomenal perception. In contrast " -

to the blocks-world results, the method is as easily stated for perspective as for
orthography, and produces quantitative answers. It has a simple mathematical
representation and computer implementation.

..'•. . 'o ° o~ ,
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2. The Computational Model

In this section a formal mathematical model will be presented as a computa-
tional explanation of the right-angle illusion. The model consists of a method for
constructing interpretations that are orthogonal and that are in the form of triplets
of unit vectors. In essence, the interpretation constructs an alternative basis for
the perceived space surrounding the viewer.

The best way to think of the method is as follows:

- A basis has six degrees of freedom (two degrees of freedom for each basis
vector).

* Each line supplies one constraint. That is, each line constrains one of the basis L. .
vectors to a one-parameter family of vectors.

* The space of possible bases, therefore, is three-dimensional.

* The optimum basis is the one that is "most orthogonal." There will be two of
these, in general. -

2.1. The Most Orthogonal Basis

A system of three nonparallel, noncoplanar lines (orthogonal or not) defines a
basis for a three-dimensional vector space. The goal is to find the basis that
simultaneously is "most orthogonal" and is consistent with (i.e., explains) the two- t. -9
dimensional pattern. This requires two elements: (1) a way to represent and
generate the set of possible bases, and (2) a precise definition of the intuitive notion
of "most orthogonal."

Let us call a pattern of three noncollinear, two-dimensional line segments (such as
those shown in Figures 1 and 2) a configuration. We are not concerned with the
length or the endpoints of the line segments. All collinear segments are considered
identical. A configuration is assumed to be the result of a perspective projection of
three lines in three-dimensional space (Figure 7). We will call any three such lines
that produce a configuration an admissible solution to the configuration. Figure
7 illustrates how a configuration constrains the set of admissible solutions: the three 0
lines of an admissible solution are constrained to lie in three planes determined by
the line segments in the configuration. These planes are called interpretation
planes. A configuration therefore can be characterized by the unit normals of
three interpretation planes: (0, , 3)...

Clearly, the distances of the lines from the viewer are irrelevant. The lines are L
only required to have certain orientations and to lie in certain interpretation planes.
We therefore consider all admissible solutions of a particular configuration consist-
ing of lines of the same orientation to be equivalent. A class of equivalent admis-
sible solutions defines an admissible basis. The basis consists of three unit vectors

rooted at the origin (the center of projection), lying in the interpretation planes, AL-J ..

8
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Figure 7: Admissible Solutions
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and parallel to the respective lines in the admissible solutions. These vectors can
be generated in the standard, viewer-centered coordinate system. (This coordinate
system is chosen such that the origin is at the projection point; the z, y, and z axes
are in the directions right, up, and forward with respect to the observer; and the
image plane is the plane z - 1. 1)

Let the three basis vectors be denoted by el, e2, and e3. Remember that el lies in
01, etc. We can write a basis vector e in 0 as a function of a scalar 0; for example,
e,(9) is in plane O, and at angle 0 from the plane z = 0 (see Figure 8). The algebra
for deriving this function is straightforward but somewhat tedious (see appendix).

We can now represent the set of admissible bases consistent with a configuration
(0110210q3): *

S = {[ei(01),e2( 2 ),e3(08 )] : -r < 01, 92,98 :5 ir)
Generating elements of this set is simply a matter of generating and substituting

values for 61, 02, and 03.

The "orthogonality" of an admissible solution can be stated in a natural way as - -

a triple product: L ..
V -e, (e2 X e3 )

This equation gives the volume of a parallelepiped associated with the three basis
vectors (Figure 9). It is sometimes called the box product. The triple product has
a maximum (or minimum) value of I (or -1) only when the vectors constitute an
orthogonal basis. In the first case they form a left-handed basis, and in the second
case a right-handed one. 2 The triple product has a value zero only when the three
basis vectors are coplanar (i.e., linearly dependent).

We can find the most orthogonal basis by searching the three-dimensional space
of admissible solutions for those with maximum or minimum V. In practice, there
seem to be a unique minimum and maximum when an orthogonal solution is possi-
ble, and these extrema can be reached by the method of steepest ascent (or descent)

*" from an arbitrary starting position. There is currently no proof of these conjec-
tures, but they have held true for many different examples.

Figure 10 shows the starting point (01 = 0 = 03 = 0; i.e., the fiat parallelepiped
lying in the image plane), two intermediate solutions, and the final, optimal solution.
The figures are produced by constructing parallelepipeds from the bases, centering
them at the point (0,0,3) in the viewer coordinate system, and projecting thm-
into the image plane with hidden-line removal. The initial parallelepiped (shown
in (a)) has zero volume because all the vectors lie in one plane. The next two
(shown in (b) and (c)) have successively larger volumes (hence the associated bases k

are more orthogonal). The final parallelepiped (shown in (d)) is actually a cube,
and its associated basis is truly orthogonal. Figure 11 puts the solution in context.

'Note that this is a left-handed coordinate system.
'Because we begin with a left-handed viewer coordinate system, we apply the left-hand rule when computing the

cross product.
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* Figure 0: Parallelepiped Associated with Basis Vectors

At this point a discussion of the nature of the interpretation produced by thi5
* niodel is appropriate. It is a scene-centered (or ohject-centre'd') interpretatin)n in

the sense of orientation; that is, it decouples the natural orientation or thQ e ne:
(or the object) from that of the viewer. It is a viewer-centered interpretation in the
sense of position; that is, the origin of the most orthogonal basis is the same as the
natural origin of the viewer (the center of projection).

2.2. Two Solutions: Which to Choose?

There are two ways to choose a most orthogonal basis: we can either maximizo or

minimize V. As mentioned above, a maximum V implies a left-handed basis. and
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Figure 12: Two Alternate Solutions

It may be helpful to consider the relationship between the most orthogonal basis
and the concept of vanishing points and lines. It is well-known that the perspective
projections of parallel lines meet at common points in the image, called vanishing L

-. -points. It has been shown that finding a vanishing point of a line is equivalent
to finding the orientation of the line [91. Hence, by finding the orientation of a - .

-• basis vector, we determine the vanishing point of all lines parallel to it. A close
examination of Figure 12 will show that, when the opposite edges of a side of the
parallelepiped are extended, they intersect the extended lines of the configuration at
vanishing points. Each of the two orthogonal bases therefore imply three vanishing
points. Furthermore, if two of the vanishing points can be connected by a horizontal--
line (as in Figure 12(a)), the associated basis vectors can be interpreted as horizontal ,
in 3-dimensional space.

2.3. Consistency .

Suppose a line segment is added to a right-angle illusion. In Figure 13, three
additional line segments, 11, 12, and 13 are shown. Lines 11 and 12 seem to "fit" the
rest of the illusion, while 13 does not. That is, 11 and 12 can be interpreted as parallel
or nearly parallel to at least one of the basis vectors, but 13 cannot. In terms of I S
vanishing points, we could consider all possible vanishing, points of a line. If It 114'(1
a posible vanishing point close to a vanishing point of a basis vector, it could be- "
interpreted as parallel or nearly parallel to the basis vector.

Accordingly, given a basis [el, e2 , e3] and a line segment I with possible interpre-
tations e(O), we can state a estimate of I's consistency with the basis as: I - ,

C {max(Ie(O).ei: i - 1.2,3) .

Each element of C is the absolute value of the cosine of the minimum possible angl,"
between one of the basis vectors and a three-dimensional line that projects to 1. hU_

.
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Figure 13: Consistencies of Three Lines

I can be interpreted as being parallel to a basis vector, the corresponding element
of C will be one; otherwise, it will be less than one. The consistency values for l,
12, and 13 are shown in Figure 13. Note that 11 is consistent with el only, but I. is
consistent with both el and e3. Because 12 is on the horizon, it intersects both of
the horizontal vanishing points. Line 13 is not very consistent with any basis vector.

This notion of consistency points to a way of finding the best interpretation for
a large collection of lines, only some of which form a natural basis. One approach
would be to select random triples of lines, solve for the most orthogonal basis,
calculate the consistencies of the other lines, and choose the basis that was in some
sense most consistent [10]. In the end, some lines would be inconsistent with the
chosen basis and should be interpreted as having unknown orientations. A similar
approach could be used to segment a scene into groups of lines that are related by
virtue of being consistent with a particular basis. L -*

It is quite possible for a configuration to lead to a most orthogonal basis that is
not actually orthogonal (for example, three line segments separated by very acute
angles, such as in Figure 4). In such a case, the method will yield a solution with
IV1 < 1. A nonorthogonal solution should probably be rejected. Of course, an
orthogonal solution may also be incorrect (in the sense that it does not explain
three lines in a scene correctly, because the lines are not really orthogonal). The
important point is that, given no more information than what is included in a single,
configuration, the most orthogonal interpretation is reasonable.

15
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3. Conclusions

The computational model presented in this paper is radically different from a
widely prevailing view (e.g., see Marr 1111) that can be paraphrased as follows:

* Largely static, unintelligent processes convert an image into a collection of
tokens, which comprise a discrete, explicit encoding of the information in the .
image (Marr's primal sketch).

e Evidence for local properties of surfaces (depth-from-viewer, orientation, cur-
vature, reflectance, etc.) i extracted from the primal sketch by more-or-
less autonomous processes (stereo, motion, shape-from-contour, shape-from-
shading, etc.).

* This evidence is collected into a "2.5D" representation of the scene, meaning,
an integrated description of surfaces in the coordinate system of the viewer.

9 Instances of objects are found in the 2.5D representation (e.g., generalized
cylinders). t .

* Finally, a description of the scene is constructed in terms of these objects.

In the model presented here, there is no 2.5D sketch. Furthermore, instead of a
multiplicity of processes producing local, viewer-centered estimates, a single process
produces a partial, scene-centered representation directly. The primal sketch retains
its role, albeit in a more modest form - it essentially reduces to line-finding. This L .
model is unconcerned with specific surfaces and objects. Instead, by producing a
natural basis, it estimates a global property of the entire space surrounding the
viewer.

This approach is most closely related to recent research on shape from contour
[9], [12], [13], [141. The general idea that relates this research is to backproject
image contours onto planes of different orientations, and to choose, as the interpre-
tation, the plane that simplifies some backprojected property. Several measures of
simplicity are suggested. For example, Brady and Yuille use compactness, defined
as the ratio of the area of the backprojected contour to the square of its perimeter;
Barnard uses the uniformity of backprojected curvature; Witkin uses the degree * . _

of uniformity of the distribution of backprojected tangent directions. The model
presented here yields interpretations not of the orientation of planes. but of space
itself. Nevertheless, the philosophy is the same: to choose the most simple back-
projection - in this case, simple in the sense of most orthogonal.

The Gestalt view of perception holds that percepts that are simple are preferred
over those that are not. The modern version of Gestalt is that the percepts that
can be most economically encoded are the ones preferred [15]. It is interesting that
an orthogonal basis can be more economically encoded that a general one; that is,
an orthogonal basis is more redundant than a general one. An orthogonal basis
can be specified by any two of its basis vectors plus an indication of its handedness. I -

. . ".".".. .... .. ..'.'.' .?-..'-.-'.'.,'-.-..J........ ... "." .. '..'_--.-..''... ....... . ..-. ,. ........ . .. .. ,i.
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A general basis, however, requires a complete specification of all its basis vectors.
The results in this paper are, therefore, consistent with, and lend support to, the 6
information-theoretic version of Gestalt theory.

Of course, the model presented here is extremely simple and can in no way be
considered a complete model of visual perception. Nevertheless, I feel that it does
illustrate an important principle that is very likely to be used in human perception.
Much work remains to be done to generalize and extend the model. The discussion
of consistency in Section 2.3 points to one kind of generalization. The case of closed .

figures such as Figure 3 can be explained by an extension of the model, and this . "
is a topic of current research. It remains to be seen whether the approach can be
applied to curved contours and surfaces.

L
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A. Derivation of Functional Description of Basis Vectors

Given an interpretation plane represented by its unit normal

we want to find an expression for the set of unit vectors in (Figure 8):

V v(): -X < < r).

We will develop and solve a system of three nonlinear equations in three unknowns:
the components of v.

The vector v(O) lies in the plane z - 0. We can impose an arbitrary directional
sense to 0 with

v(o) x V= sin. 1).
k This equation must hold, because v is perpendicular to the vector .. (Refer to

Figure 8. Remember that, because we use a left-handed coordinate system, we - -.

must apply the left-hand rule for a geometric interpretation of the vector cross
product.)

Because v is a unit vector, it must satisfy

lt =,. (2)

Because v is in the interpretation plane , it must satisfy

v- = . (3)

Our system of equations is (1), (2), and (3). We will solve for v by first usim (1)
to get a simple expression for v,, then substituting this in (2) and (3), eliminating
v., and finally solving the resulting quadratic equation for t,,.

Let

v(O) must be of the form:

-(0 0)._-

This is because it must simultaneously be in the direction

Sx (0, 0, 1)= (-01, 0, 0) -

10 :..-.-: . -
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and satisfy
:+ 2 + V

Expanding (1), we get

jV(O) x V 0. 0 X (V v, vS,)

D b(ag~v,~v iV)

=( sin 0, , sin 0, sin 0).

From the first component, we obtain our expression for v,: * 0,

v,5  Dsin 0. (4)

- Substituting (4) into (2) and (3) and expanding yields -

L.

v.2+ v2 +D 2 sin2 9= (5

and
v.0.3 + v.0., + D(sin 0)0. 0.()

Solving (6) for v,, substituting in (5), and collecting terms yields a quadratic in

D'v. + 20',D(sin O)v, + D2(sin' 0)(02,~ =0 (7)

We solve this for v.:

=, (0[~(i ) (sin D!(02- + 02 ~~* 8

Now that we have expressions for v, (8) and v.. (4), we can easily solve for i'y

using (2). S

Equation (7) has two solutions; the problem of which one to use can be re,-olved
by observing that equation (3) is satisfied for two interpretation planes: o ,' -.n.
This ambiguity results in the two solutions. Since the choice between 0i and-.
arbitrary, we can choose one and then use the appropriate form of' (8).

go-0
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SPATIAL REASONING FROM LINE DRAWINGS OF
POLYHEDRA S

Thomas M. Strat

SRI International

333 Ravenswood Ave. 0
Menlo Park, CA 94025

Abstract tiple views are available; the second part explores the problem of
cecomplishing this task when only one line drawing is available.

A method is presented for transforming a set of line draw-
ings of a polyhedral scene into a representation that embodies
the three-dimensional structure of the scene. The line draw- 2. Multiple Views
ings are first converted to machine.readable form and then back-
projected to acquire a wire frame skeleton of the scene. A The algorithm to be described solves for a three-dimensional
novel three-dimensional constraint propagation scheme is then description of a scene when several views are available. The over-
employed to transform the wire frame to a description of the solid all process can be thought of as accepting a set of line drawings of
objects which compose the scene. This process has applications a scene as input and providing as output a display of the object
in computer-aided design as well as in machine understanding of from any angle, with all hidden lines removed. The algorithm. .
multiple images. The paper concludes with a discussion of issues consists of four sequential modules called input, projection, wire
related to achieving the same result from a single view. frame, and display.

The required input is a set of two or more line drawings

1. Introduction and the angular relationships among them. A line drawing is
restricted to be the projection (orthographic or perspective) of a
polyhedron from a particular vantage point and, as a result, is aMlachines that must reason about or function in a three- colletion of straight line segments.

dimensional world most be equipped with models of objects in o n s e g
that world. A multitude of representations has been devised The input module is responsible for producing a data strutc L
for three-dimensional models 111. yet the specification of individ- ture that specifies the positions of all lines and their endpoints
tal models can he a tedious undertaking. This paper examines in a line drawing. Its actual form will vary with the source of
methods for computing a three-dimensional model of a particu- the line drawing, as different input processes dictate different
lar class of objects from a particular form of input-polyhedral procedures for constructing the data structure.
objects from line drawings. The projection module computes the three-dimensional co-

Researchers in computer.aided design have produced numer- ordinates of vertices and edges that may have given rise to the
on systems that manipulate models of solid objects to assist in endpoints and lines in the drawings. The output of the projection L _
the design, analysis, or fabrication of everything from machine module is in the form of a three-dimensional wire frarne, which
parts to factories. The act of specifying a model is one of the is represented as a list of vertices and edges. The conipufalion
most difficult tasks associated with the.e systems, is carried out by back.projecting the points in each line drawing

In an interactive image-understanding system, there am sev- and determining their points of intersection.

eral sources of line drawings. One can envision a very competent Next in the pipeline is the wire frame modale, which is the
line-finder that amtomatically extracts the line drawins of e- most interesting of the four. Its task is to derive the solid oh-
lected objects. Alternatively, the user can specify the lines Is an ject that corresponds to the given wire frame. It emplo)s a
image by pointing at their endpoints with a mouse or other In- Waltz-style constraint propagation scheme JAI, but differs ig--
put device. A third possibility is for the user to draw the figures nificantly by assigning labels to spatial regions and propagating
freehand or with mechanical assistance. Whatever the means of them throughout the three-dimensional structure, in contrast
entry, the objective is to produce a three-dimensional sketch that with propagation across a two-dimensional line drawing. Only
captures the volumetric nature of the objects. two labels wre allowed (SOLID and HOLE), and a consistent Ia.

This paper is concerned with deriving the representation ge- beling is usually achieved very quickly.

ometrically, as opposed to using model-based representations. It The display module uses the labeled output of the wire frame L
is divided into two parts: The first presents an algorithm for de- module to produce a display of the object, with hidden lines
riving a volumetric description of a polyhedral scene when mul- removed. As will be seen shortly, the hidden-line algorithm is

The rewarch reported herein was supported by the Defense Advanced Re- somewhat unusual in the way it takes atitage of the label
s-arch Projects Agency under Contract No. MDA 9o s.-.0027. information in the wire frame.
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3 SOLID
- NI>.. V, E2

Figure 4: Spoke diagram of edge El.

Figure 3: The geometry of backward projection. E

wire frame. Some of these vertices are identified in later stages of .
processing and dliscarded; the remainder are the result of aItems- ,

tive legal interpretations of the line drawings. It is also possible E3
that some real vertices may be missed, but, fortunately, they
can be found during the second phase of the projection module's
operation. E2 3

In Phase two, the edges of the wire frame are found. Two
vertices are connected by an edge only if that edge is consistent E3 V '
with all views provided. An edge is consistent with a view if that E2  E
edge projects to a line in the view, to a set of continuous colinear
lines, or to a single endpoint. When all such edges have been
found, the edges are checked for internal intersections. Any such E2 -.I "
intersections are the missing vertices of Phase one and are added
to the data base. Just as extra vertices may have been found Figure 5: Propagation of Intravertex Constraints.
earlier, extra edges may arise for the same reasons.

In Phase three, any vertex with fewer than three incident solid matter and which are not, relative to the wire frame Its L - . .
edges is eliminated. (Realizable solid objects always have at least basic tool for performing this reasoning is the spoke diagram
three edges meeting at any vertex.) Any accompanying edges are (Figure 4). The spoke diagsm is an edge-on view of a vertex.. ...-

also removed and the pruning is continued until a stable config- The spokes are the projections of the edges at a rertex onto the
uration is reached. Usually, however, there are no vertices to be plane that is perpendicular to the selected edge. The spoke di-
removed in this manner. agrm in the figure is the view along edge E toward vertex VI,

At this point, a wire frame has been computed that is guar. such that El itself projects out of the drawing. The sector he-
anteed to encompass all the edges and vertices of the object. If tween two spokes represents the solid angle defined by the two
the set of line drawings provided determines the object uniquely, edges corresponding to the two spokes and the selected edge.
the wire frame will correspond exactly to the wire frame of the The solid angle must either be filled completely with matter or
object. If the line drawings are ambiguous, the wire frame may be completely void of matter, because boundaries bet%cen mat-
contain vertices and edges present in one interpretation but ab- ter and space can occur only at faces and all faces are bounded
sent in others. The ambiguous ease can be accommodated by by edges. Therefore, each sector can be labeled by either SOLID
invoking the wire frame module for each of the possible inter- or HOLE to reflect this choke. The task of the wire frame module - '
pretations. Thmnse found to he inconsistent can be disregarded; is then to assign a label of SOLID or HOLE to every such solid
those found to have a legal interpretation can be construed as sule, t defined by the wire frame.
alternative solutions. The remainder of this paper mumes that As mentioned earlier, the wire frame module is a constraint
the wire frame has been determined uniquely. propagation algorithm. Three separate processes serve to con-

strain and propagate the labelings:2.3. The Wire Frame Modulo
I. Intravertex constraInts-These serve to propagate la-

The input to the wire frame module is a data structure rep- bela (SOLID or HOLE) among the spoke diagrams at a
resenting a wire frame that contains only edges and vertices that given vertex, as in the example of Figure 5. Ilere an as- L .
correspond to true edges and vertices of the underlying scene. signment of SOLID to the sector between the spokes corre.
The module's job is to find out which regious are occupied by sponding to edges Es and Es, in the spoke diagram of E, at

L

L . - ".
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Figure 6; Prop gation of Intervertex Constraints. Figure 7: Ilidden-line removal.• -. " .

vertex V , can e propagated to constrain the other spoke nate. Each step assigns a label, does nothing, or detects an " "" 'diagramsq at I'l. lin tihe spoke diagram of edge E., the swe- inconsistency and quits. Once a label is assigned, it is never re- 4" 1tor between edges r, and P3 must also be labeled SOLID. moved. The algorithm proceeds until all sectors have labls or no ..
The sate applies to edge I3. Corresponding sectors must change has been detected through a complete iteration. If saine
e labledh' idhtinlly because they are representations of sectors remain unlabeled, the algorithm is continued separately

the sane volfmnie in Apace. Care must be taken to account for each possible labeling (SOLID or HOLE) until a completely
for sectors wider than 180*. labeled wire frame is obtained. - -.

2. Intervertex constraints-These serve to propagate Ia-
bet front one vertex to another, as in Figure 6. lere the 2.4. The Display Module L .
newly a signed label of SOLID to the sector between E, Tutand Es. in the sp ke diagram of edge E2 at vertex Vi, can The display module uses the labels computed hy the w 'ire" "" ' "" I
anhe in p p t dlo r nhe spoke diagramsof e~ at vertex V1 can frame module to eliminate lines hidden from view. Most of the
be propgattd along E-. to cotstrain the spoke diagrams lines to be eliminated can be readily identified by the process
at l.In this ease the sector between E, and Es must
also le SOLID. The two pairs of edges define a dihedral illustrated in Figure 7. For each edge, the direction to the vitw-
angle along :. This type of constraint propagation is al- point is computed and that ray is siperimposed on the spoke dlia-

Wsay valid brrats the state can change between SOLID gram. If the ray pierces a SOLID sector, that edge is a rearward-
and HOLE only at a finre. If a face occurred somewhere facing edge and is not displayed. If the ray falls into a HOLE
along E2. it %otild ititerseet with F2 at a point other than sector, further processing is needed. The projection of tite trlIge
ote of its edpoittts, which is preclded by the definition is checked for intersection with the projection of all other vi.ibleof a wire frame, edges. If no such intersection exists, the edge is displayed. If anintersection is found, the intersecting edge is examined to deter-

3. Vertex Labeling Constraints-Some potential label. mine which side of the edge is occluded (or if both are). The edge
itgs of a %poke dingram are not legal. It is conceivable to is split at its point of intersection and each part is hantdled in the
determine the set of legal labelings for trihedral vertices, same manner recursively. It shold e noted that this algorithm S
tetrahedral vertices. etc., hut in practice this becomes un- will fail to eliminate certain occltded edges if their projtctions
wieldy. As implemented. the wire frame module applies do not intersect with any other projected edges. A less efficient ."
a so ew hal t %enker constraint. It prohibits any labeling seach would be required to eliminate these. " " " "
that is all SO LIDs or all HO LEs. Since such an assignment Re"'n " " " " ( rifn
would render the edge nonexistent, it could not be a legal Rturn to the eal o f the iera wig of
interpretation of the wire frame. In practice, this rather Figure 1, a wire frame was obtained from tie line drawings and

was subsequently processed by the wire frame module. Figure 'weak constraint has generally proved satisfactory. shows a perspective view of the result, with hidden lines removed.
Unforttnately. there are numerous special cases that arise indicating realization of the correct wire frame and the succe-shl

ditring exertion. The intravertex constraints must distinguish assignment of solid material relative to it.
between angles greater or less than 180 to ensure proper label-
ing. The intervertex constraints must be applied properly when 2.5. Summary
the spoke diagrams at each endpoint do not coincide. Extra
spokes and missing spokes are two such eas. The clas of objects that may be modeled is not as restrictive
hspoke ad it~igr sks ae enitw o cm ls

The wire frame module is a control strttcture for propagating as it may seem at first glance. Any polyhedron is permissible
these three constraints throughout a wire frame. For effciency, and may contain arbitrary concavities and holes. Cures may be L . . .
the implementation actually applies the three constraints simul- approximated by a number of line segments. Several polyhedra

taneously. It includes checks for completion and inconsistencies. may be juxtaposed in any manner.
Allhughi a given wire frame may be ambiguous, (i.e., allow more The line drawings may be either orthographic or perspective,

. than one interpretation), the algorithm is guaranteed to termi- and from any vantage point. Accidental alignments pose no par.
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and compactness of description may provide a useful inroad. nical Note 271, Artificial Intelligence Center, SRI Interns-

The determination of the origin and scale of gradient space tional, Menlo Prk, California, November 1982.
is in itself not sufficient for the interpretation of all faces in a (31 Draper, S. W., 'The Use of Gradient and Dual Space
polyhedral scene. Figure 10 shows an object and its gradient- in Line-Drawing Interpretation" Artificial Intelligence 17, -

space interpretation. Even if the orientation of face A is known August 1981, pp. 461-508. 4

exactly, the locations in gradient space of faces B, C, and D are 141 Kanade, T., 'Recovery of the 3-D Shape of an Object from

still underdetermined. The figure is analytically ambiguous but a Single View", Artificial Intelligence 17, August 1981, pp• " -.

subjectively resolvable; additional heuristics may be necessary to a S V -.-A1

find the solution.
Another issuie inherent in the analysis of line drawings is 11 Kender, J. R., 'Shape from Texture", CMU-CS-81-102,

how best to cope with imprecise input. Line drawings may be Carnegie-Mellon University, November 1980.

extracted from real images or may be hand-drawn. One would [61 Mackworth, A. K., 'Interpreting Pictures of Polyhedral

prefer an algorithm that does not degenerate completely when Scenes", Artificial Intelligence, 4, 1973, pp. 121-137.

confronted with inaccurate drawings. A drawing of an 'impossi- 171 Sugihara, K., 'Mathematical Structures of Line Drawings
ble" object, that is, a drawing that does not correspond to any of Polyhedrons- Toward Man-Machine Communication
geometrically possible object, should be interpreted as the 'cla- by Means of Line Drawings", IEEE Trans. on Pattern
est" object that is geometrically permissible. Kanade's algorithm Analysis and Machine Intelligence, Vol. PAMI-4, No. 5,
14], which works through iterative minimization of errors, pro- September 1982, pp. 458-469. - .

vides a framework for achieving this goal. One can conceive of
designing a system that theoretically supports only orthographic 181 Waltz, D., 'Understanding Line Drawings of Scenes with . .

line drawingi, and imng it to interpret perspective drawings. If Shadows", The Psychology of Computer Vision, P.1l. Win-

the focal length is suflliciently large, the perspective distortion ston, Ed., McGraw-lill Book Co., Inc., New York, 1975,

might be treated as drawing error and an approximate interpre- pp. 19-91.

tation obtained. While the validity of this approach depends on 191 Wesley, M.A. and Markowsky, G., "Fleshing Out Projec-

the application in mind, it does circumvent the diflculties of a tions', IBAf J. Rcs. Develop., Vol. 25, No. 6, November
truly perspective model. 1981, pp. 934-954.

The gradicit-space repreentation is unsuitable for analyzing L .

perspective drawings 15). The primary reason is the inability to
capture the concept of sidedness of a plane in gradient space. Sid-
edness reasoning i. evential to the interpretation of perspective
drawings beeause either side of a plane may be visible, depend-
ing on the plane's location in a perspective drawing. Formalisms
based on the Caisian sphere overcome this problem. The math-
ematies becomes a little more complex (qnadratic versus linear
equatitn), hot the two solutions to each quadratic equation, cor-
responding to the two sides of a plane in three-dimensional space,
enable quantitative analysis of perspective scenes.

4. Summary

Recovering time shape of an object from a single line drawing ...
of that object is a difficult problem. Further investigation is
necessary to achieve human-level competence.

The algorithm presented for interpreting scenes from multi-
"* pIe views embodies a novel approach to a long-standing problem.

The type of spatial re,'oning used promises to be applicable in
other situations as well. The technique may be successful when
only a portion of an object is visible and may perform adequately
even with inaccurate line drawings (such as those mising a line
here or there). It is a local reasoning process that may be es-
pecially appropriate for supporting higher-level reasoning about
solid objects.
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Abstract platforms exemplify contexts in which the imaging geometry may . . 0
not he known.

1The t ratiforniatiotn of the three-dimensional coordinates of One approach to computing the parameters of the image for-
,ia poitt to tie two-dimensional coordinates of its image can be mition process directly is embodied in RANSAC, developed by .. .. -

eapre--ed compactly as a I x .I homogeneous coordinate transfor Fischler and Bolles 131. RANSAC computes the camera location
ant in mat rix in accordance with a particular imaging geometry. directly front a set of landmarks with known three-dimensional
The inotrix can either be derived analytically from knowledge locations when, in addition, the focal length and piercing point
aiit I,, e camera and ihe geotnetry of image formation, or it can are known.
be cotnptited empirically from the coordinates of a small num- Alternatively, several methods exist for estimating the coeffi- . a
her of three-dimensional points and their corresponding image cients of the camera transformation matrix from the correspon-
point,. I),pite the utility of the matrix in image understanding, dence between image and object coordinates. Sutherland [101 de-
mai on tracking, and atlonomous navigation, very little is under- scribes a method to determine the matrix experimentally from

* o-d alott the inverse problem of recovering the projection pa- the image by using a least-squares technique to obtain the coef-
rantaer' front its coefficients. Previous attempts have produced ficients from available ground truth data. A consideration of the
solittions that require iteration or the solution of a set of simul- experimental errors involved and a means for improving accuracy
ta-os nonlinear equations. This paper shows how the location are described by Sobel [9]. L ..
aid orient at ion of the camera, as well as the other parameters The issue addressed in this paper is how to determine the
of the itnage-formation process can easily be computed from the imaging geometry from a camera transformation matrix that has
h,aogri'eous coordinate transformation matrix. The problem is been derived experimentally. For example, given a photograph
formlated as a simple exercise in constructive geometry and the taken by an unknown camera from an unknown location and
solution is both noniterative and intuitively understandable. which, moreover, may have been cropped and/or enlarged, how

can we recover the camera's position and orientation and deter-

1 Introduction mine the extent to which the picture was cropped or enlarged? If t ,
some ground truth data are available, an established least-squares

Ilomogeneous coordinates and the homogeneous coordinate trans- teclnique such as Sutherland's can be used to derive the camera
f,rifi, inatriz are a convenient means for representing arbi- transformation matrix, whereupon the problem reduces to that of
Irary trati.fortnations, inclading perspective projection in a single computing the values of the desired parameters from the matrix.
for,aali-,n. O.e -itch use for this matrix is as a camera transJlor. nnapathy [t] recently published the first noniterative method for
pi,,atinto "trir ihat maps points in an object-centered coordinate solving this problem by posing it as a set of eleven simultaneous
.y..t em into the corresponding points in image coordinates accord- nonlinear equations that can be solved to obtain the eleven inde- '-

ii, to a particular imaging geometry [71. The camera transfor- pendent coefficients of the camera transformation matrix. While L ---..-
mtioiiui matrix lisa seent wide use in several disciplines. Rogers thle method is successful at solving for camera location and orien-

* ;ud Ahtias ra~entnitnerus apliatins n cmpuer rapics tation. it is an algebraic one that provides little insight into the
(s. t tit-r fields that have made use of the camera transformation underlying geometry. The method to be described here is a geo-

itrix itichite stereo reenlistnruction, robot vision, photogramme. metric one that solves for the same parameters, but is posed as a
ar. ,intta,,md-vehicle guidance, and image understanding [5], [(;, sim)le problem in constntctive geometry and allows an intuitively
[121. [I t1. Several techniques for computing the matrix have been clear derivation.
,hri ,.d. yet very little is atderstood about how to recover the This work ha immediate application in several areas: I 0
purojectiota paramewters from the coefficients of the matrix.

N% hait the hration and orientation of the camera are known, a Many algorithms in image understanding require knowledge
li' can,.ra trnaaformation matrix that models the image forma- of lhe camera paraneters. These can be computed from an

tit, process cni easily be derived analytically [Il. This model arbitrary photograph by using the method presented here . '
furit I lit. li for subsequent processing of images produced by when groutind trth data is available.. -
thaa camern. On the other hand, when the location and orien-
tati,n af Ih. caitiera are inknown, the parameters of image for.

iaiota :atst he derived front the correspondence between a set
of image- fealtres and a set of object features. Images obtained
frmnt ain ,ttkown source or from cameras mounted otn moving

"' - ..".'".
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* *Xuao"toas navigation can be posed as a problem in de-
Srasilag raiarn parauieters. A cruise missile, for instance. WallE AOF

a-,,,lr oltaia the catnera transformation matrix from a ter-
* cain tailel stornal on board anti then compute the camera

nteirs that define the vehaicle's location and )leading.
W5 AG PO.NT5

o .%. itionwary camera viewing a robot arm workspace could -obAC? PmTa

dleteriniiae the position and orientation of the arm. Conspic- WG

*- nuu markinag of sevseral points oma a part of the manipulator PI.ASE

* acmildl allow their easy extraction fromt an image andl pro-
%isde lte ground truth necessary for Sutherland's algorithm

* to ascertain the camera transformation matrix. The camn-
era parameters can be derived from this matrix, and the FIGURE I THE IMAGING GEOMETRY

* location anti orientation of the manipulator can then be ob-
taiaaed relative to the stationary camera.

Each of the component t ransform at ions can be expressed as a
2 Th Ca era ranfor atio Marix4 x 4 matrix: multiplying them together produces the camera

trinsformation nintrix A/I. Details of the decomposition are given
*As indicated earlier, the camera transformation matrix can below.

be ais"d to ntodel in a single formalism the effects of rotation,
I ramal ion. perspective. scaling, and cropping-i.e., ail the van-. 2.1 Translation

* ales associatced with the normal imaging process. Here we re- Trnltomveteiagpaeawyfmthobc-etrd
- n~~~vew lte fundamentals of homogeneous coordinate transforma- Tasa oaaoe h mg ln wyfo h betcnee

* tcits hatareesential for understanding the decomposition to Origin. To translate lte plane by (ro. Va.zo) multiply by the ma-
* hbe titscribed. The presence of an ideal lens and the absence of trx 0 a a

any t iosplienic distortions are assumed. 0a 1 0 0
The imaging Aituation can be modeled as shown in Figure T=10  0 o

1. The .YYZ c oordinate qvstem represents the world or object. [-r _V0 I
centered coordinates. The center of projection (the location of0 l-ZL S
the lens) is shown as a point L in space. The image plane Is a 2.2 Rotation
lalatir betaween thie lens and the object onto which the object is
projected to obtain the image. Each image point is that point in Tlhe orientat ion of thec caitteca is specified by the rotation ma-
th, image plane where the plane intersects the line connecting L trix 11. which can be fairther dlecomposed to R = RRR,. come-
with lte corresponding object point. The UVW coordinate system spotaditig to rotation abotut each of the principal axes. Clockwise
is sit uated suchl i[tat (is, ) are the image coordinates of an image rot miota by tP about the N axis while looking toward the origin is
point and it' = 0 defines the image plane. The perpendicular accacaaalislted by

* ~distance bet wren L anti lte image plane is the camera focal len gth,ri a 0 1

fin a hontogeteom coordinate system, a three-dimensional point R=0 ca sn
- ~~~(.r.y a:) is reprieanted a~s A four-component row vector, (tz,ty,tz,f); [ iD cs 1

a he' I lire'a-dinie'amiotaal coordinates are obtained by dividing through 0I
k~ the fourth comnpont-nt. A point in the world is represented as NiiIarly. clockwise rotation by o about the newly rotated V' axis ~__
aI f .. r-coanpoaeit row vector and its projection in the image is is re-presented lay
,t,walv by liost awaliplying by the 4 x 4 camera transformation

raa Cos: 0 sin 6 01
xI-u0 1 0 Oj

(e X .V 'a U (.sa na,[ sin 0 0 cos~ 010
(Al~ta0s 0 0 1

Th'lihamogemeoas coordinate system is most useful for modeling
,it. .-lkcts of perspective project ion- furtaer details can be fotund atd rotation by t'about t lae new Z axis is given by
in Ballard anti Brown Ill.

*The matrix .AI can be viewed as being composed of several cos - sin,,~ 0 01
sinaple transformation.%. While it is possible to decompose the R,= ~ O~'00
mantrix in a variety of ways. the particular decomposition chosen [ 0 0 1 01'.
IIIa-t captitre all the degrees of freedom of the imaging geome- 0 0 0 1J
an. T'he sonmeulat arbitrary chaoice used throughout this paper

- a'. -laos below: The first two rotations. R, aint] Rs.erse to align tlae Z axis with
thea line of sight defitned by the 1V axis. The final rotation, R,.

Q1 (icnIe) (rat (it c)(project) (scale) (crop) is withain the image plane abouat tlae line of sight. Togethser, T
111al R = R, Ry I? accouant tor thle locat ion and orientat ion of thle

.11 TRPSC () camaera.
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FIGURE 2 PERSPECTIVE PROJECTION AFTER ROTATION AND TRANSLATION FIGURE 3 DETERMINING TMlt LOCATION OF T145 CAME"A*

a ~ 0 0lA 0aeP1

2.3 Projection C= 0 I 0
I'providles tlte distort ion associated with perspective projec- -toJr

I ion. Figure 2 shows thle simaplified imaging geometry after trans-
Imin ad rtaton av ben acoutedfor Te cmer Io~z*,n Note that neither scaling nor cropping affects the it' and a co- . .

I. i,, on the positive Z axis at a distance f fro the origin. The ordiniates of the hlomogeneous timage point, so that orthographic

itllai. plane pasres through the origin and the world to be imaged projection and rerlorntali?.ation can take place after the entire

* lie% behind the image plane. Analysis of similar triangles shw transf'ornmationl has been computed.

* that the image coordinates
~~ ~ 3 Recovering the Camera Parameters -

f(f'. 1') The camera transformation matrix At allows representation of t
Usin~g homogeneous coordinates, this perspective projection can aleee ere rfedm&-oitdwt h mg omto

hre obtained by multiplying the homogeneous coordinates of the process. Thtese camera parameters are embedded in the matrix
worldoint y the atrixitt a way that makes their determination difficult. This section.
worl pont y th marixpresenits a simple method that recovers the various parameters

1 0 0 0 1associated with image formation. Its main advantages are that it

0 10 0 is both noniterative and geometric, enabling aclear understanding
P 0 0 1 _I1f I*of the equations involved.

0 0 0 1 JThe matrix Al can be viewcd as a function that maps world 9
coordlinates into inmage coordinates according to the constraints

Tile resulting row vector is divided through by the fourth com- of Figure 1. For notational simplicity, we shall assume that all
portent to renormalize the homogeneous coordinates, and then matrix mult iplicat ions atttomatically normalize the homogeneous
projected orthographically onto the image plane w = 0 to yield coordinates of tlte resulting row vector. For example, u = x.%I
t lte proper perspective projection of the world point. (sit. =I.Sa (it, t. w'. 1). Tile image formation process can

then lbe written as
2.4 Scaling

(r~..1)=OrtItopyoject(XM~). (2)
The imtage coordina~tes can be scaled to reflect an enlargement

or hIrinking of thle image. Scaling by k. and k. in the U and V where z is the hiomogeneorts coordinate of a world point, and
- directionts is achtieved with orIIIoproctC() is a function tltat performs an orthographic pro-E ~0 001ject ion along the to, axis such that

S= 0 kv 0 01 orthoprojeef(u. I', w', 1) vI. ' 0, 1).
0 0 1 01
0 0 0 1 J3.1 Location of the Camera

-e;Tit~gthe11 ais s menuigessbecase he prspetiv proc igutre 3~ illustrates the techniqtue for finding the center of pro.
imit always ruitres thtat it,= 0. jectjolt. First, compute l,1-t for later use. Note that \1 will

siways be inlvertiblle because all its components in Equation I are
- 2.5 Cropping clearly ini-ertible. Thte location of the center of projection. L, can

The effect of cropping a photograph is obtained by translating he IdeterIitI'I pts follows:

* ~ ~~~ tire 1'coordinates within the image plane. The following matrix (lr'' trirrywilpotXt=(.y.:,I)adcm

is ier to shf hhoii y(u~ :pl I'ut = xtI . If we' were to tmult iply ta u i.UtI by
shift ~ ~ ~ ~ ~ ~ ~ ~ ' thwrgnbeno ') , wouild ohtsitt thte originial xti. Instead, first project u,

W. . . . . .0
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FIGURE 4 DETERMINING THE ORIENTATION OF THE CAMERA FIGURE 5 DETERMINING THE PIERCING POINT

t10 Obtaini orthn1 rojecf(ui) 1)i,.t,. ) where (u , v1 ) are the il
IfiiIat i'oordittats' of x1..Next, backpiroject this image point by a=aciI m~iniiilying by Al' to obtain x1l. This specifies another world + 11 _+4A. + A13 I;
pointf. X1I. Vkiiiclt is diffe'rent frotife original x, but constrained where!t 0 6il e clockwise rotation about the X axis and 0 is the
to hei alongi life' lite cotnecting xt and the center of projection clockwi-t' rotation about the rotated Y axis. The final rotation
I.. To conirit I tli%, note t(atill( I points lying along thle line conl- paIraintler. c. is tiit rotation within the image plane about the It'
neiing x, and 1, are transformed by %I to points identified by axis. Tite noagnituide of 0' cannot be obtained from the normal to

(ilii'iIt' I).whee u sares itheadipoit. he cnvese ust ilet intage plane: instead, it requires a more complex derivation
* Itis~l Ii.. Irut'. iTat is, for any a-. (ut. II, a-, I A~specifies a point that involves detertiiatuoti of the p~iercing point and the relative

oItiewlieIre alontg tlie line connecting x, and L. scale factors. These valtit's are derived in the following sections
Repeat thle above process with another point x-. to obtain the anti tile valite of t. is finally computted in Section 3.5.

Poitnt x~i. which must lie on the line connecting x-. and L. Now x,
antl i I,1 aind x: and x~l dlefine two lines that pass through L; their 3.3 Piercing Point, Principal Ray, and Cropping
itersection can be computed to obtain the world coordinates of
l.. This methodi will fail, of course, if either xt or x: lie in the Mitich work in image undcritanciing requires knowledge of the

ge plane or if X,. X2 atid L are colinear. Because their choice is picreingI point1 (or stare pioint) in an image. This is the point in an
art tlrary. valid points can always be found that allow the unique Image that corresponds to the world point at which the camera

was riitned. ft is (fit' point si which the principatl ray (the ray along ..

It ~ ~ ~ ~ ~ ~ ~ ~ ' 'riitoIfL o h aeawich thle camera was nift'd) pierces the image plane (Figure 5).
rPife principal ray is assumnedi to be perpendicular to the image

3.2 Orientation ofltene.er

Tile orientation of tile camera is defined by the orientation of To find thle piercing poittt. first find a point p along the prin.
ilit' intage plane (Figure 4). The latter can easily be established cilpal ray (other than I.):

I obt)-ert'ing that world points lying in the plane that is parallelI to tit' iiage plane anti that passes through the center of the lens p = L + kil,
%till map) to infinityv in image coordinates. The only way this can hetire k is ainy--clrcclt0 rt irigpitu sgvnb
hipllIn for a fintite world point is if the fourth component of the cart'et0.rieprinpot.uisgvnb

liilni,-ngttoiis itpage coordinate is zero. uo = orthopirortr(p.1I) = (uO. vo, 0,1)
rils. if

(7, Y.: I )A~ I (u, U, W,0), bxeallse at111 puitit siting lipritncipal ray must project to thle .-.. -

p~iercing p)oint ill tlit iiage. 'rife extent to which the image has
-itf f.IlOVI thlat 1wet, i'ript'il is given hI #to,. I'll).

-
11

ti7 + -1124Y + 11134Z + 0,~= 3.4 Focal Length and Scale S

Iit i I li. thi' .iti;t ioin of t lie plane through L, parallel to the im- 111li'cn ' flr~einti iliacntn itnefo

t'e lanet. Frot this equatitiotn it is clear that thle vector n Ileile.Iliert cisr t rin jc sIim o tllee dicnstnere stnce bewen ocain

AI t.1 ., ) is itorinis to the image plane and parallel to the 91lI.~ it a~n ht oa egh o xml.duln

lh ition ot o -i of roain abu heai anb e roi leiiI Ii t I tjwiliml to enlarging the pictutre by a factor
liii' Iruitttit ~0t in letils o rotatons abut theaxesTcnebeem (11.ittI' can hope f'or ii110a1'rfortsianreation entw tilteettw

3 icalciilliiiil I ilifuig spherical coordinates such that

B=arctan -3 '11 iing,' plant- in Voflo' raml~ras u-,'I in rIoilgrmritetry is nlt perpenI.
-itiliar In the line' of sieti: Ithis ease. h-ev'er. is notI cotlsgideT d here

............... -........ ........ ........
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PaI"C PAL FIGURE 7 DETERMINING THE ROTATION WITHIN THE IMAGE PLANE

FIGURE 0 DETERMINING THE SCALE FACTOR thei vnliites of e and o to reconstrutct R, and R, and use the chosen
focal leng t to construct a perspectiv'e projection matrix P. This

PairameiIters. Ol lite other hand, if the focal length of the camera comtprises a model .11, = Ti? RP. which can be employed to
iknowni. lte exact scale factors can be determined. rontlutt (lie transformation of an arbitrary world point. Call the

Figure G shows life geometry for computing the fJ-component re!Ililtgl, point Pi.

of the scale factor. First chooike an arbitrary world point xi Next. tis' lte previously determnetd piercing point to recon'
(not on tile principal ray) and compute its image point ut sirttct the mtatrix C. Thlen utndo tile effects of cropping from the

art/I~Ir~cI~x .1) (at.v 1 .0,).Conversion of these image camlerat lto(IeI by 111 it~ittlg tilte origitnal camera trantsformlationt

imits1 to World units requtires dividing by the scale factor such Iltrix by C-' to olaitI

u, an III M' IC TRPS;CC-' = TRPS.

uhere it', anti I-, are thle slimtnce of an image point from the Now till' I'lects% of urthbalaticed scalitng will be eliminated. Use the -

itlags oigii.Ineslredit woit unts Net ompten, heangl r'laltit scale factor computlted earlier to construct a scale trans-

bertween liten prittcipal ray anid the rmy from L to xt, projected formuatiotn matrix:
in tie ll' e 1151-=O. Then it is clear from the diagram that the r
following reiltion tmust hold01(1

0 0 5. 1' 0
7an [01 0 0 1j

At I wr. A. ill I w ttnil'lc a, it of t ite imnage in tile U direction. If TheI.tt illip .lli ' by 1 S' to 011 lit
Ili. focal Illgth is known, ltll scale' factor

._1 -1t- I"S= ' TIIS'S' -TRIPS".

ftant aiet

--r if th~e caie factor is knownt. kA. 0 0 01

oiltI~ _1 s s 0 A. 0 0

f = 0 00110

II'l compifaItIil It f A.- tlt' -component, of the scale factor, is lIinatly. i155 .11: to t'omtttt tite tratnsformation of lte ptreviously
illoincal. NI'iiil.r kI, rtor k, can he determined individually with' chosetn World point anti call lite resuilt P
1,II kitliedge' orf i i' focal lettgtit. but their ratio can be calculated The attgle I' call now be determined by making use of Equationl
romi quat1151it ii divedu' front th li' nat cix. I titd i lite foliou ing observat ion. Tite only differences between MI

-1 It 'l - ra (141 - ifo) tan CV antd .112 are titeir focal lengtits, a scale factor, and a rotation
k --tlf 5 Jn - t' -- = o ta about tile It' axis, A~lthough the scale factor is unknown, it is S

k, fano, fann, (tl -vo)tanct.equal in the U and V' directions because this was compensated
for in computing .1.Together the scale factor and focal length

3.5 otaton ithi tis Imge Panedifferences serve only to change the size of the image and impose

* 511 no1w reiliitn to tile tderivation of V,, the rotation of the cam- no oilier distortions. Observe that pt is the image point that
era abot lte II' axis. Th'lis rotation is equivalent to cropping the would hei obttainedt if titere Weet' tto rotation about the It' axis.

iniage at an atngle to the 17V coordinate system. The value of' 5 is t0 scalintg of tife imagte. atI ito cropping of the image. Similarly.
Lfound by chtoosing a world point and comparing its transformation p.. it e ilitage Iloiit thant is obtained by starting with tite trite
* iatt~uder two di fferent situat ions, as illustrated in Figure 7. imIage Imlif asslciateli %ith i le chosen object point atnd utndoing

Virm. use tite coordintates of L computed earlier and an arbi- iliv e.ct' of cropping and~ titibalanced scaling. An) difference

Irary focal length to reconstruct the translation matrix T. Use lwceIlI1 Pi -Id p.. 11111%( he iite' resullt of different-simed images -.

7-S-
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,r l -aien ii the II cortate sce. th roainl i cnere [31 Fiscliler. M. . and Blles. R. C.. "Randomi Sample Con-
al-tl 'it-owiin f 1is oorinae sace tie agleI, an e sumi: AI'ardigii for Mdel Fitting with Applications to

.lvierinioi,, by measuring lte angle between Pit and p: atlie Inmage Analysis anti Automated Cartography", Communira-
lw.i ,iit. The dilitring focal lenigths and scale factors can affect
M.il% ste (ii'taiice at tile points tram tile origin and cannot alter lions ofithe A~CM. Vol. 21. No. 6, June 1081, pp. 381-305.
tI it- ihe I etucen tile points when measured from the origin. [4[ Garnpathy. -Decomposition of Transformation Matrices1 for Robot Vision-', )FEE, 1984, pp. 130-139.

4 Dicusion[5) Genncry. D. B.. "Stereo-Canmera Calibration". Proceedings
of the Image Understanding Workshop, November 1979, pp. *

Thei itt hod piresented here provides a straightforward way ot 101-107.- .

lcriniiig the parameersi of lte imaging process from a homo- [61J Lowe. 1). -..Solvinig for the P'arameters at Object Models ...

ti.M.t1it. Coordiniatie tran..forniation matrix. The geometric inter-frm ttgeleriios' 'WrshpArl190p.
,pre tat iftn provide. some insight into what the equations mean and 12 17
%i lit-n Iheiy iay trail. Tile appendix ilust rates application at tlte0

IchiiiItiie to several set% of real dalta. 17] Roberts. L.. G.. -Machiine Perception of Three- Dimensional
Ito practice, we must he concerned with the robustness of such Aolids'. MIT Lincoln Lab. Technical Report Na. 315, M~ay

an ilcuritlin and how it is affected by errors in the data. For 1963.
V~ittple. if f or k are- very large, the view angle subtended by [8RgrsD.F.ad da.3. fIimin Eenets
Illie ititagi is snill and lite, projection is nearly orthogonal. In this f8 ors.D F.iii,Ic an das, J.~rwh~l Book Chm pany, Nlewet

ct-i-. lte met hod b~ecomes sensitive to the precision of the ma- fo-optrGahrM~rwHl okCmay eYok 96
irix. andI only lte camera's orientation can be ascertained with ~ r,17.1 .
ciiience. This property is inttrinsic in the problem formulation, [91 Sobel. IL. 0Oi Calibrating Computer Controlled Cameras
atnd atly initod that derives camera parameters from the corre- for Perceiving 3-D Scenes". A4rtficial Intelligence 5. 1971.
piitiic betweeti image and world coordinates is subject to this PP. 185-198.

senisit ivit y. The paraometers; computed by the methods outlined in
gui.' paper calt he tused to reconstruct the camera transformation [101 Stherland. 1. E., 'Three Dimensional Data Input by Tablet",
milrix (withIin it choice of foscal length) when synthetic data are Proceedings of the IEEE, Vol. G2, No. 4, April 1074, pp.
used. When empirical data are used, as in the appendix, instabil- .15.3-461.
ities in tile matrix often make it impossible to reconstruct it with Ill] Thiomtpson. Morris NM.. Maualuo of Photogramnielry Amen- .
accuracy. can Society of Pilot ogram met ry. Falls Church, Virginia, 1966.

The camera model used throughout this paper is somewhat
simplified. The image plane has been assumed to be perpendicu- 1121 hUman. S., The Interpireian n of Visual Moiona, The MIT- --

lir t o t he prinicipal ray and thle image axes are asstumed to he per- Press, Cambridge. Massachusetts, 1979.
pri,liciilir. Fiirtirmore. the effects of anon-ideal lens and other
iimistri,ic iisorliotta have been ignored. The accuracy of t lte A Examples
h.t~o-iionm %%ill degrade if these assumptions are not valid.
Vt l, tiv do0 nt expect this techtiique to be any more robust We now present two examiples to illustrate our teclinicie.
in I hl of (Gaimapathy. we do feel that its geometric interprets-

tii.: provid" i.. .eftl cities as, to when it will be dependable. The A-1 Imagery from Robotics Applications
nt hod'k utility has; beeni demonstrated on actual photographts

ii -~ais it is io-iterative, the computational burden is in- Canapathy, used the following experimentally determnined 3 x
.~iiiliniit-1 matrix to denmonstrate his nicthiod [I.11

.3819 0.41M.18 -.039462 847.4 ....
5 Acknowledgments -. 0-1:1897 - .062872 -2.4071 882.91

.00026388 -. 00062759 -. 000071843 1.0]
I wouild like to thank Robert Bolles for his comments and pa- I. .

Piie ini dei'iggitig the software for least-squares determination This matrix is used to obtain the image coordinates (usevs..)
of a cattera transformationi matrix, and for supplying that pro- by preniultiphying the world coordinates, (zt, yt, :t,t). by the ma-
zrain in the first place. I ait also grateful for discussions with trix. To make it compatible with the notation used throughout
1lci ;aiiiapai hi' aL4 to ltei- relation between this method and his this paper, it must be tranisposed atid an arbitrary coloinn vector

in'. ii. ~itiserted. This colunmn is lte one that determines v.' and does not -...---

aff-ct tlie iniaginig process. The matrix, suitably rewritten, is

Bibliography -2.3819 -.0389t 7 0.0 -.00026:1881
Ml 0. 196 8 - .062872 0.0 - 00062,-19

-.0390162 -2. 1071 1.0 -. 00007181:1
IP allard. ID. If.. and Brown, C. M., Computer Vision, Prentice- 817.-10 882.91 0.0 1.0 J

Hall1. New Jersey. 1082.

Proim this, matrix lte follouing- values were obtained by lte
j21 Caimeron. It., .lboie San~ Francisco, Cameron and Company, metthod 1treseiited in Section -Tl

Sant I'raticisco. 1976.
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Description of SRI's Baseline Stereo System

Mansha Jo Hannah
Artificial Intelligence Center, SRI International
333 Ravenswood Ave, Menlo Park, CA 94025

Abstract

We are implementing a baseline system for automated area-based stereo compilation. This
system, STSYS, operates in several passes over the data, during which it iteratively builds,
checks, and refines its model of the 3-dimensional world, as represented by a pair of images. In
this paper, we describe the components of STSYS and give examples of the results it produces.
We find that these results agree reasonably well with those produced on the interactive DIMP
system at ETL, the best available benchmark.

Introduction , - .

Automatic techniques for the production of 3-dimensional data via stereo compilation are
receiving increased interest for a variety of applications, including cartography [Panton, 1978],
autonomous vehicle navigation [Hannah, 19801, and industrial automation [Nishihara & Poggio,
19831. Conventional stereo compilation techniques, which are based on area correlation, can
produce incorrect results under a variety of conditions, for example, when views are widely
separated in space or time, in the vicinity of partial occlusions, in featureless or noisy areas, and A .
in the presence of repeated patterns.

We are investigating ways to overcome these inadequacies. Our research strategy is first to
implement a baseline system that performs conventional stereo compilation, then to replace pieces
of the system with improved modules as we develop them. Thus, our baseline system will be the
core of an ever-improving stereo system. We also intend to test the baseline system against a
"challenge data base" of image areas where conventional stereo techniques fail. At

As currently implemented, our system includes routines to perform the following operations
• .automatically:

Select "interesting" points for sparse matching

* Search 2D regions for sparse matches

• If necessary for uncalibrated imagery, compute relative camera parameters from sparse
matches

* Compute epipolar lines

• Locate epipolar matches, using disparity estimates from sparse matches when available

• Evaluate matched points for local consistency and believability

• Interpolate between matched points I .

Display images and results in left-right stereo, red-green stereo, or as a monocular disparity
field

* Compute range data and x-y-z coordinates for matched point pairs

* Display terrain data in perspective with hidden lines removed.

We are currently exploring improved techniques for image matching, for match evaluation, and . S
- for terrain surface interpolation.

L .-.. . .-.. . . . - ..
* " .. °".. . . . . . .... . . . .

lJ'... . ... . ....... . ....... .... _..... ,..... .... ,,..... ,......,..... ,, :./ .
. . . . .. ... : .. .. .. ... . ... . . . . . . . ,. , . . • . . . .. • :
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The Stereo System

Over the past several months, SRI has integrated existing pieces of stereo code into a
baseline system for automated area-based stereo compilation. The system operates in several
passes over the data, during which it iteratively builds, checks, and refines its model of the 3- .
dimensional world represented by a pair of images.

The driving program is called STSYS (STereo SYStem). It invokes a variety of modules to
perform the necessary processing for stereo compilation. In theory, the modules are independent
and can be replaced with improved versions at will; in prautice, there are some unavoidable
interdependencies of global variables that will have to be attended to.

The following sections describe the components of STSYS in the order they are normally
invoked; examples of their results are included. Comments are also made as to improvements
that could be made to each of the modules.

REDUCE

The basis for the image matching techniques is a hierarchy of images, as shown in Figure 1.
REDUCE is the module that forms this hierarchy from the original images. In the example used
for the figures, the original images are a pair of image "chips" digitized from standard 9"xg"
mapping photos taken over Phoenix South Mountain Park, near Guadalupe (a suburb of
Phoenix), Arizona. These images are 2048x2048 pixels in size, and cover an area that is
approximately 2 kilometers square on the ground; elevations in the area range from 360 to 540
meters. The reduction hierarchy consists of a pyramid of images, each at half of the resolution of
its parent; in this case REDUCE produces pairs of images that are 1024x1024, 512x512, 256x256, I -. ...
128x128, 64x64, 32x32, and 16x16 pixels in size. (Figure I shows only the 256x256 through xi1--
image pairs.)

At present, REDUCE produces pixels in each reduced image by simple averaging of the
pixels in an NxN square in the next-largest image (in the above case, N=2). It is known that this
technique can produce artifacts in the data, and a more sophisticated technique of convolving the
image with a Gaussian, then sub-sampling, is preferred (Burt, 1980). Substitution of this
technique will be one of the first enhancements made to STSYS.

INTEREST

The first step in the matching process is to procure a set of well-scattered, reliable matches
in the image. Our approach is first to select areas in one image that contain sufficient " -

information to produce reliable matches. To accomplish this, a statistical operator based on
image variance and edge directionality is passed over the image; local peaks in the output of this
operator are recorded as the preferred places to attempt the matching process.

Historically, such operators have been called interest operators, and the peaks in the
- operator output have been called interesting points [Moravec, 1980]. This nomenclature is

somewhat misleading, as the points selected are rarely interesting to a human observer; however,
these terms have been in use in the computer vision community for over 10 years. It should be L
noted that present interest operators are not feature detectors; the same operator run over both
images of a stereo pair will not necessarily pick out the same points in the two images. In our

. system, the interest operator is run in only one of the images, where it selects points that are to
be matched in the second image by other means. (A possible enhancement to STSYS would be to
design and implement efficient interest operators that really do choose "interesting points," such
as crossroads, building corners, sharp bends in rivers, etc.) -

INTEREST permits the user to specify the operator to be used [Hannah, 19801, the window
" size over which it is calculated, and the window radius for testing local peaks. It also provides

the capability to divide the image into a grid of subimages, and records the relative ranks of the " .' -
interesting points within their grid cells; this permits the most interesting point(s) for each area to
be matched first. Figure 2 shows the interesting points for the right image of the Phoenix pair; '""•''
the numbers indicate the 1st, 2nd, 3rd, and 4th most interesting points in a 6x6 grid of cells.

'- ~~~~~~~........ . °.-.. .. ..... o °•.,.•....o. . .o o ............... .. '°" ".••
• % • % o % o . o • • % ° ° • - , • -. . .... . . . . .... . . . . . . .•.. .-.. . . . . .- • • ,. •• -, o, . •

° ° -, ..° °. ° • , •.•. °' . ., ,°,." . . . . .,. .".. . . . . . . . . . . . . . . . . . . ." • ° .• % , , 1 , •N, ", ",-, • .
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Prelminary Matching

At this point in the processing, it is possible to take one of two different approaches to the
matching. If nothing is known regarding the absolute camera positions and orientations (as would
be the case for an amateur, handheld stereo pair), an unstructured hierarchical matching
algorithm is used on the most interesting points. The results of these matches are used in seeking .
a solution for a simplistic relative camera model (5 angles describing the relative positions and
orientations of 2 ideal cameras [Hannah, 19741), which can then be used for the epipolar
constraint in further matching. This approach uses the modules HMATCH and C2MODEL,
described below. On the other hand, if the camera parameters are known (as would be the case
for the highly calibrated cartographic stereo images intended for terrain mapping) matching can
proceed directly with the epipolar constraints, using the module LMATCH. .

HMATCH

HMATCH assumes that nothing is known about the relative orientations of the images,
other than that they cover approximately the same area, at about the same scale, with no major
rotation between the images. It matches each specified point (usually the most interesting point
in each grid cell) using an unguided hierarchical matching technique similar to that reported in
(Moravec, 19801. This technique begins with the point in the largest image (the 2048x2048 right
image of the Phoenix set), traces it back throngh that image's hierarchy (in our example, it
repeatedly halves the co-ordinates of the point) until it reaches an image that is approximately • ;
the size of the correlation window (the 16x16 image for the lixil correlation windows that we
used). It then uses a 2-dimensional spiral search, followed by a hill-climbing search for the
maximum of the normalized cross-correlation between the image windows [Quam, 19711. This I, ... 9
global match is then refined back down the image hierarchy; that is, the disparity at each level
(suitably magnified to account for relative image scales) is used as a starting point for a hill-climb
search at the next level. The correlation window size remains constant at all levels of the
hierarchy, so the match is effectively performed first over the entire image, then over increasingly
local areas of the image. This technique permits the use of the overall image structure to set the
context for a match; the gradually increasing detail in the imagery is then followed down throug'i j.-
the hierarchy to the final match.

Figure 3 shows the results of this technique on a point in the Phoenix set. The image
hierarchy is the same as in Figure 1, with the addition of 63x63 image chips covering the matched
area in the 2048x2048, 1024x1024, and 512x512 images; these are shown in the upper right corner
of each hierarchy. The matching began in the right image in the 2048x2048 chip, traced the right
point through the hierarchy (approximately clockwise in the figure) to the 16x1 right image,
matched it to the IxOB left image, then refined it back through the left image hierarchy until
reaching the left 2048x2048 chip.

It is instructive to look at the correlation coefficients for these matches (see Table 1). In the
smaller images, the correlation is poor, since the window covers a large area of terrain with a
great deal of relief. As the matching moves up the hierarchy, the correlation improves, because
the window now approximates an area at a single elevation. After reaching the 512x512 images, I . _0_
however, the correlation begins to decline, both in absolute value and with respect to an
autocorrelation-based threshold [Hannah, 19741. This is due to noise in the images; if one
examines the chip from the 2048x2048 left image, one will see several streaks across the image,
representing scratches on the original photograph and/or dropped data in the digitization; close
examination also reveals a grainy noise pattern. Because the degraded correlations will cause
difficulties in determining which matches are the correct ones, our processing has gone only to the
512x512 images. More code will be added to STSYS in order to refine the final matches from this
level down to the original 2048x2048 images.

Figure 4 shows the results of HMATCH on the most interesting point in each grid cell.
Only the points thought to have been matched correctly are shown; those with poor correlation or '. - -
whose matches fell outside of the image have been discarded by STSYS.

.... .. .... . . .. . . . . .. . . ... . . .
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C2MODEL

If no camera calibration information is available, the module C2MODEL calculates a
simplistic relative camera model from a set of matched point pairs. This is accomplished by
searching for 5 angles-the azimuth and elevation of the second camera's focal point with respect
to the first camera; and pan, tilt, and roll of the second camera's axes with respect to those of the 0 .
first. The object of the search is to minimize the error between the matched point in the second
image and the epipolar line produced when the point in the first image is projected through the '. -

hypothesized cameras. The search proceeds by a linearization of the equations and their analytic
derivatives [Gennery, 19801. Once a solution is found, the reliability of the matched points is
assessed. Points that appear to contribute too much error to the solution are removed from the _-.-__....

calculation, and the solution is redone. Either this process reaches a successful conclusion when S
the point set is found to be consistent, or it reports failure if too many of the point pairs are
rejected.

The resulting camera model is quite crude, as it must depend on a guess as to the focal
lengths of the cameras and the length of the baseline between the cameras. Also, it assumes that
we are using ideal cameras, thus totally ignoring the internal calibration of the cameras. It is, --
however, suitable for approximating the epipolar constraint to simplify further matching.. . .

LMATCH
If the camera parameters are given (or once the crude ones have been derived), matching

can proceed somewhat more efficiently. The camera parameters define the manner in which a
point in the first image projects to a line in the second image-the epipolar constraint. This
constraint can be used to cut the search from 2 dimensions (all over the image) to I dimension 7 .. -

(back and forth along the epipolar line).

LMATCH proceeds very much like HMATCH, except that the search for a match is
confined to the vicinity of the epipolar line. Because we assume that there is no outside . -

information to indicate where these preliminary matches lie along the line, we again use the
hierarchical technique to search out and refine the match. If relative camera parameters have
been derived, LMATCH is used on the second most interesting point per grid cell, plus any points
that C2MODEL indicated were unreliable; the results of this mode are shown in Figure 5. If the
true camera parameters have been supplied, LMATCH is used on the two most interesting points
in each grid cell; these results are shown in Figure 6.

Anchored Matching

Once several reliable matches have been found, they can be used as "anchor" points for
further matching. Our basic technique for this again uses the grid cells in the image. A given
point will lie in some grid cell; the closest matched point(s) will lie in that cell or in one of the 8
neighboring cells. Under the assumption that the world is generally continuous, a point would be
expected to have a disparity similar to that of its nearest neighbors. Thus, to approximate the
disparity at a point, we first calculate the average of the disparities of the well-matched points in
the current and neighboring cells, weighted by the inverse of the distance between the current
point and the neighboring point. (As we develop more sophisticated interpolation schemes, this
disparity approximation technique will be upgraded.) This approximate disparity is used along
with the epipolar constraint to perform a very local search for the match to a point. Note that a
point is considered to be well-matched if it has a correlation above a user-settable absolute
threshold, usually 0.5, as well as having a correlation above a variable threshold, based on the
autocorrelation function around the point in the first image (see Table I for examples). Our
definition of well-matched should also be upgraded to include distance off of epipolar lines as well
as a measure of how consistent the disparity is with its neighbors.
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PMATCH

At this point in our processing, we have matched the two most interesting points in each
grid cell. This is still rather sparse information, so we next invoke the module PMATCH to
match the balance of the interesting points. It uses the anchored match technique described
above, with a generous search radius along the epipolar line, to find these matches. Figure7 
shows the results of this module. Two different marks are used for the matches, denoting whether -
their correlations indicate that they are well-matched.

GMATCH

We next produce matched points on a closely spaced grid. The module GMATCH also uses "
the anchored match technique, with a somewhat restricted search radius along the epipolar line, 0
to calculate matches on a user-specified grid. Figure 8 shows the results of this module on a
20x20 grid, again using different marks for the different qualities of match.

Terrain Modeling

Given the dense grid of matched points and the camera calibration, it is possible to derive a
digital terrain model. If external and internal camera information is available, the module S .
SRIDTM can be used to create a reasonably accurate DTM, which can then be displayed with
another program, DTMICP. (An example of DTMICP output is shown in Figure 9; it can also
produce range images of the terrain or pictures of the original imagery "painted" on the terrain.)
If the only camera information is C2MODEL's relative model, then the module RELDEPTH can
be used to create a relative DTM. However, due to the many over-simplifications and the
computational instability of the relative camera model, such relative DTMs are of very low -9.: -
accuracy, and their use is discouraged.

Often, a terrain model is desired that has its points more closely spaced than that provided
by the stereo matching process. Sometimes, there may be areas of the images that cannot be
matched, due to noise in the data, insufficient information, or changes such as moving vehicles;
this will result in "holes" in the grid of terrain data, which must be filled in somehow. In either
case, interpolation of the matched data points is necessary to provide information at other points.

.- Work on this topic is reported separately [Smith, 1984].

Evaluation

Evaluation of the accuracy of STSYS is difficult, as there do not seem to exist stereo data
sets with known ground truth to compare against our results. We do, however, have the results
of an interactive stereo compilation algorithm called Digital Interactive Mapping Program
(DIMP), produced and operated by the U.S. Army Engineer Topographic Laboratories (ETL)
[Norvelle, 19811. It should be noted, however, that ETL's results were obtained by an
interactively coached process, which was run on a 5x5 grid in the 2048x2048 images and used
correlation windows warped to account for the local steepness of the terrain, while ours were
obtained by a fully automatic process that ran on a 20x20 grid in the 512x512 images without
warping; comparing them is a little like comparing apples and oranges. (Another planned upgrade
to our matching techniques is the use of warped correlation in the match refining step.)

Of our matches (both interesting points and grid points), approximately 98% agree
reasonably well with the nearby ETL matches at the resolution of the 512x512 images. Of the
remaining 2%, most are clearly blunders on our part, although a few appear to be the result of
errors in the DIMP compilation. It is not known what fraction (if any) of the 98% represent
places where our processing and the DIMP processing produced similar wrong answers. L •

Discussion
SRI has an operational baseline system for automated area-based stereo compilation. This

system, STSYS, operates in several passes over the data, during which it iteratively builds,
checks, and refines its model of the 3-dimensional world represented by a pair of images. In this
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paper, we have described the components of STSYS and given examples of the results it produces.
We have compared these results to those produced on the interactive DIMP system at ETL, and
found that they compare favorably.

STSYS is, at present, an experimental program; no attempt has been made to optimize it
for best results or fastest operation. The program is still evolving, and will not be ready for
transfer to other users until its methods stabilize. Likewise, more complete documentation must
wait on completion of the code.
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A Fast Surface Interpolation Technique.
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Abstract
influence exerted by the data values themselves, against that

A method for :uierpolating a surface through 3-D data is exerted by the implicit surface model embedded in any fitting P 0
presented. The method is computationally eicient and general procedure. If our data values ae inaccurate and we know the
enough to allow the construction of surfaces with either smooth class of surfaces that should it the data, we can usually let the
or rough texture. surface model dominate the construction process. Least-square

methods are typical of procedures that prefer a model to data. In
general, techniques whose resultant surfaces do not conform ex-

1. Introduction actly to the data are known as approximation methods. Methods .

that produce surfaces conforming exactly to the data are called P .
In image analysis we ae often faced with the fact that the interpolation methods.

measurements we make in an image only constrain properties of The selection of an approximation or interpolation method
the 3-D world, instead of specifying them. Analysis techniques is inluenced by properties of the data other than their accuracy.
that recover 3-D shape information from image measurements Consider, for example, the terrain data collected by a surveyor.
incorporate very restrictive assumptions about the nature of the In selecting the places at which to make measurements, he con-
world. In our attempts to avoid the need for these restrictions, sidera the breakpoints of the surface - that is, those places on
we have been examining hypothesis-and-test methods. If we the surface where the gradient is discontinuous - and his data .
assume that we ae able to obtain some shape data, from which include measurements at these breakpoints. Surface reconstruc-
we can hypothesize an approximate shape model for the world, tion by linear interpolation over triangular surface patches is
then we can use this model to predict image features. To proceed possible because the surveyor has furnished not only the 3-D
from shape data to an approximate shape model we need to lResh data, but also an implicit statement that the surface between
Out" the data. In this paper we address the problem of fitting a his points can be approximated by planar patches. In match-
surface to a set of points whose 3-D locations are known. While ing stereo pairs of images, an edge-based matcher provides more
our interest centers on Biting a surface to 3-D location data that than the 3-D data it produces. Like a surveyor's data, it io .
have been acquired by processing images of that surface, the makes an implicit statement about the continuity of the imaged . .
technique developed has application to a broad class of surface- surfaces. On the other hand, an area-based correlation matcher " "
fiting tasks, says less about surface continuity, but has the desirable behavior

To select a surface-fiting procedure, it is insufficient merely of providing regularly spaced data.to know the data set and to require that a surface be fitted to the Such data can usually be processed with considerably lesspoinio in that set. We also need to know the desired properties of computational effort than data that are irregularly spaced. The - .
pIhe suriac, the characteristics of the dot , and the uses to which volume of data, the regularity of their spacing, the implicit t. _

characteristics of their collection procedure, nd their us huracy
the fitted surface will be put. If we are building a surface to
allow, say, water runoff estimates to be made, smoothness may ae all essential parameters in selecting a surface-fitting tech-
be a desired property for that surface. For realistic rendering nique. For our applications we choose to investigate interpola-
of a natural surface in computer graphics, however, a fractal tion methods. We want methods that will work with irregularly
surface may be preferable. While the technique we develop spaced data, but still achieve substantial computational savings
can construct either smooth or rough surfaces, our applications if we can use a regular grid of data points. We need to be able
generally require the former. Our examples, Fiures S and 4, to handle thousands of such points. As a rule, we do not want to 0 .
show both types. use implicit properties of the data that stem from their collection

procedure.
Besides the desired properties of the itted surface, the The uses to which the fitted surface will be put fun her

characteristics of the data limit the approach we must adopt restricts the set of applicable surface-fitting proced ures. If the
to surface construction. In fitting a surface we must balance the task at hand is surface area estimation, the accuracy of the

The research reported herein was supported hy the Drfense Advanced surface gradients is not important. Conversely, if we wish to
Research Project Agency under Contract h(DAiO3-SS.C-0027 and by the use the fitted surface to generate the latter's image nler some L.
National Aeronautics and Space Administration under Contract NAA known lighting conditions, the surface gradient informntion then
9-16604. Thee contracts are monitored hy the U.S. Army Engineer
Topographic Laboratory and by the Texas A&M Reserch Foundation for becomes crucial. We can classify the uses of fitted snrarce, by
the Lyndon 8. Johnson Space Center. the surface derivatives that ae needed. An appliention that does
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not require surface derivatives to be calculated can usually be the cone's apex is in the z - 0 plane. That is, the data are
satisified by a surface composed of local patches. That is, the fitted with a set of cones, some of which are inverted. The z
surface is fitted locally patch by patch, with each patch deter- value of the constructed surface at position (z,y) is calculated
mined by a small number of local data points. Such methods by summing the z values contributed by each of the " cones at
have strong surface models and few data are needed to instan- this (Z, V) position.
tiate them. As a consequence, however, the surface derivatives Each cone has one free parameter, namely, its apex angle;
are more a function of the surface model than of the data. The we determine these apex angles by requiring that the constructed
amount of data used to determine the surface patch may be surface pass exactly through the data points. In the foregoing
barely sufficient to calculate an average value for the surface expression, the cj's correspond to the apex angles of the cones.
derivatives across the whole patch; besides, any variations in We calculate the cj's by solving the nxn system of linear equa-
derivatives actoss the patch are caused by the model, not the tions
data. The more data employed, the less is the influence of the E-.t ,)1 hI1 

-- , i =0 .n-

surface model on the calculation of surface derivatives. In the ctfJ.Oc , YJ +h .... . . . . .

extreme case, all the data may be used to determine the sur- Note that this fitting technique does not require that the
face to be fitted at each locality. Such techniques ace called data be regularly spaced; furthermore, when h 7A 0, hyper-
global methods, whereas those that use only local data are lo- boloids rather than cones are fitted to the data. Cones and
cal methods. Our applications require that we calculate surface byperboloids are not the only options. Stead [21, for example,
curvature from our fitted surface. The technique we present here has generalized this method, using the form
is a global method for surface fitting. .)

!a summary, we address the problem of fitting a surface to a , I) - E".c [(z, y) + hi
large data set composed mostly of regularly spaced data points,
but which also includes grid points at which we have no data, 2.2 General Form
and non grid points where data values are known. The data are
acquired through a collection process that is assumed to yield We examine surface-fitting techniques that use the general

accurate values, but for which we choose not to characterize the form of the above method, namely,

data frther. We require a solution that is smooth and from zz, - "_'cez - vi, -
which we can calculate the first and second surface derivatives.. o
We present details of a global interpolation method that is com- where the kernel function # is any function of the parameters
putationally efficient and appears to applicable to a broad range x - zj,V - vij. Clearly, the previously defined functions are
of tasks. Although the general form of the method applies to particular cases of this form. As before, we determine the jr's
non gridded data our computationally efficient algorithm comes by solving the nxn system of linear equations
from exploiting the regularity of the data points.

We commence by considering the multiquadric method in- - .--,.,.
vented by Ilardy (1) for modeling natural terrain. In its general- For large values of n it is not feasible to solve this system 0
ited form, we examine it under the restriction of regularly spaced of equations. In our applications " may be 10,000. flowever,
data points and derive an algorithm to solve for the unknown for smaller n we have used the above form to *patch" holes in
parameters. We show how to generate the interpolated surface a regular grid of data points. While any kernel function can be

* in an efficient manner. employed, we have found it important to match the method m.edl
to solve the nxns system of linear equations to the form of the
kernel function selected. The numerical difficulties encountered

2. Surface Interpolation in solving some of the systems of equations produced by a par- -
ticular kernal can often be averted by exploiting properties of
the linear system stemming from the choice of kernel function.

2.1 Hyperbolic Multlquadrles For example, if we use the Gaussian function as the kernel, the

Suppose we have a set of data points, ftzt, Vj, zi)Ij'. in -D symmetric positive definite coefficient matrix of the system of
" space to which we wish to fit a hyperbolic multiquadric surface linear equations allows solution by the "square-root" method

I]I defined by (see, for example (31), and avoids the numerical problems created .. ..
by Gaussian elimination. If we impose the restriction that the I 0

tF*j.0'-t.'[(z , P) + A] data points must be gridded, we can find feasible solution tech-
niques even when a is of the order of millions.

where dj2fz,) - (z - xj)' + (v - ij)', h is a user-specified 23 egaGrd ou-
constant, and e's are the coefficients that must be determined.

To understand this method, let us suppose that h - 0. The Consider the problem of fitting the surface
data are fitted by placing a cone at each of the " data points E.-1 -_. I
so that the cone's axis is aligned with the s axis direction and (, -, o E1 , ..0 ciU(z I- ) , ()

. .. I.. .. .. .. .•
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3|. • ,-

where J(..j. , is an nxm regular grid, to the data set this analytic expression for surface interpolation we may have

[(r.j, p., :i.fJ , .o1" We can find an expression for calculat- to calculate this sum a very large number of times. The coqt

ing the eq's in the following manner. savings gained in computing the cij coemcients by means of Ihe

Let GIi, v) denote the discrete Fourier transform (DFT) of DFT (implemented by the fast Fourier transform) will be on'set

g(, y). Using the shift theorem of DFT theory, we note that the by the cost of these summations. As a rule, if we commence

DFT of (zz ~J, I-i)isG(tW€-'h".+£l"i}. If Z(u,v) with data on a regular grid we want an interpolated surface on a

denotes the DFT of zf, V), we can write the DFT of Equation finer grid. This results in considerable savings which are realized

(I), namely, when the DFT is again employed.
--. ,,. Suppose we want to interpolate each grid interval in z and

Z(, .h't,, kA Vp V at an additional number of points so that the final surface is

- , ... , n - 1 calculated on a rtxem grid. Consider Equation (1), revised for

the new, larger grid:r -,.., - 1.
~ tm-Iw-,..mI.(3)•

Removing G(ub.,,v,1) from the summation, we have z(z, y) =- i-o x- Cj,#(Z Z,,.i, IF_,,j)3

-
' -1  -2 " J944 Z(utv&,a) where

-2,,.L 0e.cti-'-, -G- (uh,t,,) '

4, .-ei+vi+e i (mod r) - O,j (mod a) - 0,
Taking the inverse DFT of the above expression, we obtain -0 otherwise.

E", ' --- I E"n- ,: I That is, we assume the surface is constructed by the placing
of objects at each of the new grid points, but zero coeffilcients

¢-2(--.--.t--+ )k.19ij. "." ( o----g-+ "4 are a.sociated with all objects except those placed at the original
data points. Now, taking the DFT of Equation (3), we get

C-- - I-Z(u.,,v,' )lI +A ! .em-I

E -L1-0 Gkuh" -04..) 1~5 *vg O- 1 c' 1  '

Using F-  to represent the inverse DFT, FI- I(,. ,,.,) , " .
is the inverse DFT of calculated at (zp,,, p,-). We have for k -0.rn - .•~a k ." -I ..

'.Cto-.,. ',L..o.,o " ie.,.em'-;I,'

i: _.Z(u,V) where G'(u,v) is the DFT of (z,V), defined on the finer grid,
Ft j--- I~r ,, up,,) and C'(u, v) is the OFT of the array et j.

Now if z ,,, and gj VV5, The interpolated surface can be formed by taking the in-
verse DFT of the above expression: . --

- 1" " )- -[zij,'(u )C'(",,'")"

otherwise
- 0 Note that, in finding the e1,'s in Equation (2), we took the

inverse DFT of ? then stretched these ,,,'s by adding zeros 0
Ihnee at the points corresponding to the new interpolation points, and

finally took the DFT of the stretched coefficients to cnlculate
ij F- JG( zj, w j) (2) C'(. v). These steps are in fact unnecessary, for we can calculatenlme, ".u:Iv

the C'(u, v)'s directly from the I2 " The similarity thereom
An alternate way of viewing the above derivation is to note of OFT theory 151 is required:

",- that U(pr- ZJ, -i,j) forms a eirculant matrix, and to
recall that such matrices are diagonalized by the discrete Fourier Cs(,., Vel) __ I Z(um (mod i), vki (mod n)l (I)

- transform 141. re G(ub,, (mod n), vkj (mod " ))

2.4 Surface Rendering -0.. s-I.

Once the ei,j's have been calculated, Equation (I) provides
an analytic expression for the constructed surface. We can cal- 2.5 Algorithm
*clate z(z,p) for any (z, W) position. However, each such calcula-
tion involves the sum of tons terms. If it is our intention to use We can now write down our interpolation algorithm: L . _

-.
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I. Given the data array z(:tij, 1.j), find its DFT, ZMujj, vj) syntbetic surface data the constructed surface appears to allow
2. Find the DFT, G(naj, vj), of the kernel function, g&zj, u ij) adequate surface curvature estimation. This will be tested fur-

3. C(uj, vi,j • ther in future applications.
4. Calculate C'(uij, vjj), using Equation (4)
5. Calculate G'(uij, vi, 1) for the larger interpolation grid
6. Z'(1,.jt,.j) - C'(u.j, v,j)G'(ujj, vj, 1) 4. Conclusions
7. Find the interpolated surface by taking the inverse DFT of

Z'(t~j, l.A.We have presented a method of surface interpolation that

Note that for selected kernel functions Steps 2 and 5 could is computationally efficient. The reconstructed surface is fitted
be precomputed for standard-sie gids. As an alternative, these globally to enable the data rather than an implicit surface model

steps can sometimes be accomplished by analytic means if the to control the construction process. The method makes it p.s-

analytic form of the kernel function is known. sible to build not only the more customary smooth interpolated
surface, but the roughly textured type as well. •

Surface reconstruction methods provide a means of us-
3. Discusion ing the hypothesis-and-test approach in image analysis. They - -'

. Dprovide a mechanism for using image information that only con-
For purposes of illustration, let us compare the compute- strains rather than specifies 3-D world parameters. The outlined

tional efficiency of this method on a regular grid with the cost algorithm is a tool for bypothesising a broad range of surface
"* of the usual non gridded formulation of the multiquadric. Of types... .

course, since the usual formulation deals with irregularly spaced
data, we would not expect it to compare favorably with this References
method; such a comparison nevertheless confirms the advantages
of our technique. Consider a square n" grid of data points on I. Hardy, R.L., Multiquadric Equations of Topography and
which we want an interpolated surface over a rnxrn grid. The Other Irregular Surfaces,J. GeopAysical Re., Vol. 76,
uqual multiquadric formulation solves a nxnt system of linear No. 8, 1971, pp. 190 1015.
clitation at a cost proportional to no, and calculates rnxrn sums 2. Stead, S.E., Smooth Multistage Multivariate Approximation,
of terms at a cost proportional to r2 n4 . If it is assumed that Ph.D. thesis, Division of Applied Mathematics., . 9
n > r, this cost is dominated by the no term. Brown University, Providence, Rhode Island, 19R3.

The algorithm outlined above is dominated by the cost of 3. Froberg, C-E., Introdurtion to Numerical Analysis,
the DFTs in Steps S and 7. We use the fast Fourier transform to Addison-Wesley Publishing Co., 1069.
implement the DFT. This means that we pad our data with zeros 4. Hunt, B.R., The Application of Constrained Least Squares
to force the dimension size of the grid to be a power of 2. At Estimation to Image Restoration by Digital Computer,

S.worst, our grid is 2rnx2r. The cost of the DFT is proportional IEEE Trans. Computers, Vol. C-22, No. 9, 1073,
to Ir2

nn
2 lo2rn. Even if r were -a great as n, this cost would be pp. 80-812.

proportional only to n.logn. From an empirical standpoint, the 5. Bracewell, R.N., The Fourier Trans form and Its .
algorithm outlined is faster for " (and k) of the order of 10. Applications, McGraw-Hlill Book Co., 1978.

The outlined algorithm places little limitation on the type
of kernel function employed. Not only smooth, but also rough
functions may comprise the basic objects from which the sur-
face is built. We have used, inter alia, cones, hyperboloids, . -

and Gaussian-shaped objects, some of which had fractal texture
added to them. In Figures 1-4 we show profile plots. Figure I
.thows a real surface, Figure 2 the sampling grid we used to select
data points. In Figure 2 the profiles depict what would have
been obtained if we had used bilinear interpolation to build the
surface. Figure 3 reveals the resultant surface when Gaussian
kernel functions were used, while Figure 4 was obtained with
a kernel function that had fractal texture added to a 0aussian [ .
base. When we compare the fitted surface to ground truth, the
average error for the smooth kernel functions nqed by urns, is ap-
proximately one percent of the data height range. As with any
fitting technique, we cannot construct surface features that are
not described by the sampled data.

We indicated that one reason for investigating global sur-
face interpolation techniques was the need to ralelate reliable - 0
estimates of surface curvature. In our preliminary trials with
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Abstract * Minimise the mis difference between the disparity rena-
surements and Oground truth.' Without pround truth, we

This paper describes a new technique for use in the auto- cannot measure this. Z.
matic production of digital terrain models from stereo pairs of
aerial images. This technique employs a coarse-to-Ene hierarchi- e Maximis the sensitivity of the disparity measurements to
cal control structure both for global constraint propagation and small-scale terrain features, while minimizing the effects of
for efficiency. By the use of disparity estimates from coaser lsv- nose.
els of the hierarchy, am of the images is geometrically warped to e Minimise the frequency of false matches.
improve the performance of the cross-correlation-baed match-
ins operator. A newly developed surface interpolation algorithm * Minimise the frequency of match failures.
is used to 5il boles wherever the matching operator fails. Ex- These critria are mutually exclusive. Under idel conditions,
perimental results for the Phoenix Mountain Park data sat we incsearingterie mtelm atcuope atodec rea esntheeect
presented and compred with those obtained by ETL. nrnn8hein he oetoder eshefecs."- -of noise on the disparity measurement, but it also diminishes

sensitivity to small terrain features. Similarly, tightening the
1 Introduction match acceptance criteria reduces the frequency of fae matches,

but results in more frequent match failures.
The primary objective of this research was to explore new One of the goals of this system is to minimise the number

approaches to automated stereo compilation for producing digi- of parameters that must be adjusted individually for each stereo
tal terrain models from stereo pairs of aerial images. This paper pair to get optimum performance.
presents an overview of the hierarchical warp stereo (HWS) ap-
proach ,and shows experimental results when it is applied to the 2 Approach
ETL Phoenix Mountain Park data set.

The stereo images are assumed to be typical arial-mapping This section briefly explains the JWS approach, which coa. L .9...
pairs, such as those used by USGS and DMA. Such pairs of im- guts of three major components: %

% ages are different perspective views of a 3-D surface acquired at
approximately the same time and illumination angles. Normally a Coarse-to-ftne hierarchical control structure for global con-
these views are taken with the camera looking straight downward. straint propagation as well as for efficiency
The major effect of non verticality is to increase the incidence of
occlusion, which increases the difficulty of point correspondence. e Disparity surface interpolation to fill boles wherever the

We shall call one of these images the 'reference image,* and matching operator fails. .
the other the 'trget image.' We will e searching in the target
image for the point that best matches a specified point in the a Geometric warping of the target image by using disparity
reference image. estimates from coarser levels of the hierarchy to improve the

It is also amumed that the epipolar model for the stereo pair performance of the cross-correlation-baed matching oper-
is known, which means that for any given point in one image ator.
we can determine a line segment in the other image that must
contain the point, unless it is occluded from view by other points 2.1 The Use of Hierarchy and Surface Interpola-
on the 3-D surface. This is certainly a reasonable assumption, tlon to Propagate Global Constraints
since an approximation to the epipolar model can be derived
from a relatively small number of point correspondences if the The goal of stereo correspondence is to find the point in the
parameters of the imaging platform ae not known a priori. target image that corresponds to the same 3-D surface point as

a given point in the reference image. it is often impossible toThe primary goal is to automatically determine correspon- eettecretmthpit ihol h mg nomto
dence between points in the two images, subject to the following telect the correct match point with only the image information
criter. that is local to the given point in the reference image in combin- ,. .:tion with the image nformation along the epipolar line segment k

in the target image. When the 3-D surface contains a replicated 71
pattern, there is the likelihood of match point ambiguity. Let usTh rarc wv e spported tty the Dente Adyed Reosrch Prol consider, for example, a stereo pair that contains a parking lot

Aglla~y sad. Celre No. MDA 0. . . . . .. .
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with repetitive markings delimiting the paking spaces. Around MeumiNc TARGET

the edge of the lot therean image points that can be matched "
unambiguously. Within the parking lot, ambiguity is likely, de- mA, . ID) " Ei •.
pending on the orientation of the repetititive patterns with the um "PAO

epipolar line. A successful stereo correspondence system must be LVEL '

able to use global match information to resolve local match-point - -P

ambiguity.
HWS approaches this problem in two ways. First, global %..'cs

constraints on matches ae propagated by the coarse-to-fine pro- UP. 1

grmnion of the matching process. Disparities computed at lower
*resolution are employed to constrain the search in the target in-. IMXA

age to a small region of the epipolar line, which also greatly w,,PRM 111 . .
reduces the probability of selecting the wrong point when am- MAT"

biguity is present. Second, whenever the match process fails to LEVEL I
find a suitable match or detects a possible match ambiguity, a
disparity estimate is inserted that is based on a surface interpo-
lation algorithm, which uses information from a neighborhood
around the disparity "hole,; with the size of the neighborhood - • ..

depending on the number of neighboring "holes." M

2.2 The Use of Image Warping to Improve Cone- . .9

latlon Operator Performance X

One of the greatest problems in the use of area correlation for
match point determination is the distortion that occurs because
of disparity changes within the correlation window. Since area- -
based correlation matches am, rather than individual points,
the disparity it calculates is influnced by the disparities of all of FIGURE 1 ....

the points in the window, not just the point at the center. When Block Diagram of Hierarchical Control Structure L
there are high disparity gradients or disparity discontinuities, the
correlation calculated for the correct disparity can actually be so
poor that some other disparity will have a higher correlation 1. Initialis:
score.

The effect of correlation window distortion can be greatly * Start with a stereo pair of images (assumed to be of

mitigated in a hierarchical system by using the disparity esti- the me dimensions).
mates from the previous level of matching to warp the target * Call one of these images the "reference image," the L ...
image geometrically at its current resolution level into ch -r cor- other the "target image."
respondence with the reference image. e Construct Gaussian pyramids (Burt 121) reference.

and targ4 for each image. The images at level i in
2.3 Related Work these pyramids correspond to reductions of the origi. -. - -

nal image by a factor of 2'.
Norvelle IlI implemented a semi automatic stereo compila- Se• -tirhap id at sito

tion system at the U.S. Army Engineer Topographic Laboratories Set diap-t to either the a priori disparity estimates orS

(ETL) that operates in a single pass through the images. It uses all gem.

disparity surface extrapolation both to predict the region of the e Start the iteration at level i = 0.
epipolar segment for matching and to estimate the local surface e Choose the pyramid depth D so that:
orientation so as to warp the correlation window. He found that
these techniques improved the performance of the system sig- D = ceiling(log2(uncertainty)) - 1.

nificantly, but that considerable manual intervention was needed " ""." in an "t
when the surface extrapolator made bad predictions, or when the where uncertinty is an estimate of the maimumJme onaied muwihno information for matching, with difference between dip-! and the "true" disparities.
image contained rso w with i on This guarantees the "true" disparities will be within -the range (-2: +2) at level 0 of the matching.

3 Sequence Of Operations In Hierarchical 2. Warp: Use the disparity estimate. 2 * dispi..1 to warp
Warp Stereo orgetpo- geometrically into approximate alignment with

relereneeD.f. Note that the factor of two is equal to the
Figure 1 illustrate. the hierarchical control structure of the ratio of image scales between level i and level i - 1 of the

system. hierarchy. 1 . ..

3. Match: Using the matching operator, compute the mid- .

usl disparities adispg between the warped target and the
reference images at level .

* 0

......................... _, . .........
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p 0
4. Refine: Compute the refined disparity estimates: More complicated approaches to peak estimation, such as

two-dimensional leaet-squares fitting of the correlation surface,
itP -2 a dPiE.- + Adian. might yield better estimates, but at a higher computational cost.

5. Fill: Use the surface interpolation algorithm to fill in dis-
parities estimates at positions whem matching operator 6 Surface Interpolation Algorithm
fals because of no image contrast, ambiguity, etc. The goal of the surface interpolation algorithm is to estimate 1 0

6. increase resolution: If i D, quit; otherwin lot i -i + I values for the disparity surface at points where the match op-
and go to Step 2. erator reported failure; such points will be called 'holes.' The

approach to filling a hole at location x, t is to model the surface
by employing the disparity measurements over the set of non-

4 Disparity Estimation holes W in the n x n pixel neighborhood centered at z, I. The

set H contains the indices of all holes in the neighborhood.Disprity estimation consiste of three parts: This surface interpolation algorithm is based on the solution .

o Computing match operator scors for disparities along an to the hyperbolic multiquadric equations described in Smith [ ]
epipolar segment. The surface is known at the set of points z, %, zi where i E H,

and can be estimated at other points h e H by the formula
9 Accepting or rejecting the collection of scores according to , = • - z, pa -

a model for the shape of the correlation peak. "-

* Estimating the subpixel disparities at acceptable peaks. where I is the basis function for the surface respresentation, and
coefficients c4 are the solutions to the set of linear equations:

4.1 Match Score Operator *i- VJ)ffi - * (z -cl - V) forallj , e

The HWS approach presented her can be implemented with des
a variety of match operators. All results reported hers were Clearly, this irregular grid solution could be used to compute
obtained with an operator that cloesly approximates Gaussian- the surface values at the holes in the disparity data, but this
weighted normalized cros correlation. The values of the Gans- involves solving for the coefficients c for each different configu- .
sian weights decrease with Euclidean distance from the center of ration of holes and nonholes in the a x a neighborhoods of the .
a square correlation window. In the examples shown here, the disparity surface.
window dimension is 13 x 13 pixels with a standard deviation of An alternative approach, which is used here, is to convert the
approximately 2 pixels in the Gaussian weights. Preliminary re- qusi-reguar grid problem into a regular grid problem in which
suits indicate that the Gaussian-weighted correlation operator is each ci at a hole is forced to be zero, and the corresponding ri
better than uniformly weighted correlation operators at locating r .aun .h r lsn e m otnh
changes in disparity while maintaining a given level of disparity would have been obtained from the irregular grid formulation
precision.

and produces the following system of linear equations:

4.2 Evaluation of Correlation Surface Shape AJ * = - a A r for al h E H, (1)

The match operator reports a failure if any of the following deNr e"'
conditions exist: where A-1 is the inverse of the matrix Aij = (- z , - )

for,j HUKu . This system of equations must be solved for each
9 Disparity out of range: The maximum match score is found si for i e H. Thus, we have reduced the size of the linear system

at either extreme of the epi-polar segment. of equations that must be solved from the number of elements
e Multiple peaks: The best and next best match scores i in 17 to the number of elements in H. Of course, the matrix A L .

fmust be computed and inverted once.
found at disarities that differ by more than one pixel. Areas on the disparity surface that contain large clusters of

There are other models for the expected shape of the corre. holes cause problems. The previous surface interpolation algo-"
lation surface that can be based on the autocorrelation surface rithm degenerates to a surface extrapolation algorithm when the
shape of the windows in the reference and target images. Further nonholes in the neighborhood are not more or less isotropically
investigation is needed to evaluate the utility of such models for distributed over the entire neighborhood. The problem can be
both surface shape evaluation and disparity estimation. overcome by increasing the size of the neighborhood until some 0

spatial-distribution criterion is met, but this would require solv-
4.3 Subplxel Disparity EstimatIon ing extremely large linear systems.

Large holes are filled by means of the following hierarchical
The subpixel location of the correlation surface peak is esti- approach:

mated by parabolic interpolation of both the x and y directions
of disparity. For each direction, three adjacent match scores - Procedure Surface-Interpolate(surfacei)
ei-t, si, and s4+1, where ei is the maximum score - are used to
compute the peak as follows: 1. If surfacei contains large holes then L

28-. -4+1 -

. . . . . . . . . . .
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(a) Compute filled-surfacei+l = The bottom-left images of figures 4 and 5 show the pixel-by-
expand(surface-interpolate(reduce(surfacee))), pixel differences, after contrast enhancement, between the HWS
where reduce computes a Gaussian convolution reduc- and ETL disparities. The graphs to the right of these difference
tion by a factor of two, surface-interpolate is a recur- images depict the histograms of these differences.
sion call to this interpolation algorithm, and ezpand The mean and standard-deviation values shown with the his-
computes expansion by a factor of two, using bilinear tograms provide a useful quantative comparision between the
interpolation. HWS and ETL results. They show that the average disparity S

(b) For each hole in surfacei that is completely surrounded differences were .082 and .025 pixels, and that the standard devi-
by other holes, fill the hole with the value from the ations of the disparity differences were .67 and .34 pixels for the
fil1ed-eurface,+,. A and B window pairs, respectively, in ternA 9f pixel distancesin the 2048 x 2048 Phoenix pairs. These standard deviations be-

2. For each hole in surface fill the hole by solving the system come .17 and .17 pixels when expressed relative to the scales of
of linear equations (1) for the n x n pixel neighborhood A and B windows, respectively.
centered at the hole (n = 7 in the examples). Similar results have been achieved for other examples that

include both higher resolution and larger windows.
3. Return the filled surfcei.

7 Problems
6 Examples

HWS is still very experimental. Some of the parameters that
This section describes the experimental results achieved when affect the system, such as the range of disparities to compute at

the HWS technique was applied to areas of the ETL Phoenix each level of hierarchy and the sis of the correlation operator,
Mountain Park data set, and compares these results to those ob- are still specified manually.
tained from the semiautomatic system developed by Norvelle 11. There are problems in estimating the range of disparities to

The following components of the Phoenix Mountain Park be computed at each level of the hierarchy. If the estimate is
data set were used: too low, there will be frequent out-of-range match failures. If,

on the other hand, the estimate is too high, computation time
* Left image: 2048 x 2048 pixels, 8 bits per pixel will increase and there will be more potential for match point '

* Right image: 2048 x 2048 pixels,$ bits per pixel ambiguity.
HWS has difficulty dealing with steep terrain features that

e x-correspondence array: 400 x 400 points , floating point. have small image projections, but large disparities. At low ree- . . _
olutions in the matching hierarchy, the disparities of the terrain

The left and right images had been scanned such that the surrounding the feature dominate those of the feature itself, re-
epipolar lines were almostly exactly horizontal. The ETL x- suiting in a disparity estimate that is usually intermediate be-
correspondence array was converted to an x-disparity imag to tween that of the feature and that of the surround. At higher
enable comparison between ETL and HWS results. resolutions in matching, the disparity of the steep feature may

Results are shown for two different areas of the Phoenix data be outside the permissible disparity range. .. .
set. All disparity measurements ar indicated in ters of pixel UWS has even greater problems with oblique stereo pairs
distances in the 2048 x 2048 Phoenix stereo pair, rather than the containing many occlusions. At low matching resolution, the die-
resolution of the selected windows, parities of foreground and background in the same neighborhoods

cannot be distinguished. As the matching resolution increases,
o Area A is defined by two approximately aligned 150 x 150- frgon n akrudfaue r icril ssprtforeground and background features are discernible as separate ,i"" .

pixel windows of the Phoenix pairs which were reduced objects, but their disparities are out of range for the matcher.
by a factor of four (the windows thus corresponding to the Most of the difficulties caused by sudden changes in disparity L
60 x 600-pixel windows of the originals). The measured might be solved by preceding the disparity surface interpolation
disparities for area A range from -40 to +16 pixels, step with an algorithm that attempts to match still unmatched

aArea B is defined by two approximately aligned 125 x 125- regions in the reference image with regions in the target image
pixel windows of the Phoenix pairs which were reduced that likewise have not yet been matched. We thus attempt to
by a factor of two (the windows thus corresponding to the match holes with holes.
250 x 250-pixel windows of the originals). The measured
disparities for as B range from -40 to -34 pixels. 8 Conclusions 0

Figures 2 and 3 show the inputs and outputs of three levels HWS produces very good results for vertical stereo pairs of
of the hierarchy for ares A and B, respectively. Columns I and rolling terrain. With the incluson of a hole-to-hole matching step,.. . .
2 are the reference and target images at each level. Column 3 H WS should be capable of comparable performanL for terrain
is a binary image that indicates the positions of match failures. characterized by steep slopes and frequent occlusions.
Column 4 shows the resulting disparity image of each level after
the match failures have been replaced by surface-interpolated . . . . -
disparity values. L. ....

Figures 4 and 5 contain a comparison of the HWS results with
thon obtained at ETL by Norvelle for areas A and B respectively.

."-' 9 i~

,-.o " - - - o.







I I

Reference image Target image Reference image Target i mage

IIWS disparity image ETL disparity image HWS disparity image ET. disparity mago

FWIN - FTr. difference INS1 - ETL histogram tIWS - ETL difference INqS ElT. iiqt Tonr

F I:URF 4 IINS vs. ETL results for area A FIGURE 5 INS vs. ETI. results for -ir,i B 5

* 0

* I 0



APPENDIX G

Shading into Texture
By: Alex P. Pentland



-p. *

SHADING INTO TEXTURE 0

Alex P. Peatland
Artificial Intelligence Center, SRI International

333 Ravenswood Ave., Menlo Park, California 94025

ABSTRACT
Shape-from-ahading sad shape-from-texture methods have the I 0

serious drawback that they are applicable only to smooth surfaces,
while real surfaces are often rough and crumpled. To extend such
methods to real surfaces we must have a model that also applies to
rough surfaces. The fractal surface model [Pentland 831 provides a for-
malism that i competent to describe such natural 3-D surfaces and,
ia addition, is able to predict human perceptual judgments of smooth- A .
nes venus roughness - thus allowing the reliable application of shape
estimation techniques that assume smoothness. This model of surface
shape has been used to derive a technique for 3-D shape estimation
that treats shading and texture in a naifed manaer.

L INTRODUCTION

The world that surrounds us, except for man-made environments,
is typically formed of complex, rough, and jumbled surfaces. Current L 
representational schemes, in contrast, employ smooth, analytical primi-
tives - e.g., generalized cylinders or splines - to describe three.
dimensional shapes. While such smooth-surfaced reptesestations fuc-
tion well in man-made, carpentered environments, they break down Figure 1. Surfaces of Incresing Fractal Dimension.
when we attempt to describe the crenulated, crumpled surfaces typical
of natural objects. This problem is most acute when we attempt to The fractal model of surface shape 16,71 appears to possess the
develop techniques for recovering 3-D shape, for how ean we expect required properties. Evidence for this comes from recently conducted
to extract 3-D information in a world populated by rough, crumpled surveys of natural imagery 16,81. These survey found that the fractal . _ -.__._

surfaces when all of our models refer to smooth surfaces only? The model of imaged 3-D surfaces furnishes an accurate description of most
lack of a 3-D model for such naturally occurring surfaces has generally textured and shaded image regions. Perhaps even more convincing,
restricted image-understanding efforts to a world populated exclusively however, is the fact that fractas look like natural surfaces 19,10,111.
by smooth objects, a sort of "Play-Dohb world III that is sot much This is important information for workers in computer vision, because
more general than the blocks world. the natural appearance of fractals is strong evidence that they capture

Standard shape-from-shading 12,31 methods, for instance, all all of the perceptually relevant shape structure of natural surfaces.
employ the heuristic of "smoothnes to relate neighboring point. on a L
surface. Shape-from-texture 14,51 methods make similar assumptions: IL FRACTALS AND THE FRACTAL MODEL
their models are concerned either with markings on a smooth surfacs,
or discard three-dimensional notions entirely and deal only with ad hoc During the last twenty yearn, Benoit B. Mudelbrot has devel-
measurements of the image. Before we can reliably employ such tech- oped and popularized a relatively novel clas of mathematical fuse-
niques in the natural world, we must be able to determine which sue- tions known as trrctak 19,10). Fractals are found extensively in nature
faces are smooth and which are not - or el generalist our techniques 19.10,121. Mandelbrot, for instance, shows that fractal surfaces are
to include the rough, crumpled surfaces typically found is nature. produced by many basic physical processee. The defing characteristic

To accomplish this, we must have recours to a 3-D model com- of a fractal is that it has a fractional dimension, from which we get the
petent to describe both crumpled surfaces and smooth oes. Ideally, word "fractal." One general characterization of fractals is that they
we would like a model that captures the intuition that smooth surfaces are the end result of physical processes that modify shape through I&o
are the limiting case of rough, textured ones, for such a model might cal action. After innumerable repetitions, such processes will typically
allow us to formulate a unified framework for obtaining shape from produce a fractal surface shape.
both shading (smooth surfaces? and tetuse (rougl urfaces, markings The fractal dimension of a surface corresponds quite closely to our
on smooth surfaces). intuitive notion of roughness. Thus, if we were to generate a series of

scenes with the same 3-D relief but with increasing fractal dimension L
D, we would obtain a sequence of surfaces with linearly increasing
perceptual roughness, as is shown in Figure 1: (a) shows a iat plane
(D ets 2). (b) rolling countryside (D ft 2.1). (c) a old, worn mountain
range (D *a 2.3). (d) a young. rugged mountain range (D am 2.5), ad,

Foundation Grant No. DCR48-12766 sad the Defense Advanced finally (e). a stalagmite-covered plane (D am 2.8).
Research Projects Agency under Contract No. MDA 0 3-C0 EXPERIMENTAL NOTE Ten naive subject (natural
(monitored by the IJ.S. Army Enginer Topographic Laboratory) E
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" language researchers) were shown sets of S/teem 1-D curves and a two-dimensional vector at all scales (i.e., values of Az) between some
2-D surfaces with varying fractl dimensioa but constant range smallest (Azmi ) and largest (Az,..) scales.

(e.g.. see Figure 1), and asked to estimate roughness on a scae DEFINITION: A spatially Isotropic fractal Brownian surface
of one (smoothest) tc ten (roughest). The mean of the subject's is a surface in which the components of the surface normal N - 0
estimates of roughness had a nearly perfect 0.98 correlation (i.e., (N*, Nv, N) are themselves fractal Brownian surfaces of identical frac-
96% of the variance was accounted for) (p < 0.001) with the tal dimension.
curve's or surfaces's fractal dimension. The fractal measure of Our previous papers 16,71 have presented evidence showing that
perceptual roughness is therefore almot twice a accurate as any most natural surfaces are spatially isotropic fractal., with Azr.. and
other reported to date, e.g., [13. Az,.., being the size of the projected pixel and the size of the examined

Fractal Brownian Functions. Virtuall all fractals encountered i surface patch, respectively. This finding has since been confirmed by
physical models have two additional properties: (1) eaeb Segment is others 181. Furthermore, it is interesting to mote that practical fractal.
statistically similar to all others; (2) they ar statistically invariant generation techniques, such as those used in computer graphics, have S
over wide transformations of scale. The path of a particle exhibiting had to constrain the fractal-generating funaction to produce spatially

Brownian motion is the canonical example of this type of fractal; the isotropic fractal Brownian surfaces in order to obtain realistic imagery

discussion that follows, therefore, will be devoted exclusively to frac- 111. Thus, it appears that many real 3-D surfaces are spatially isotropic
tal Brownian functions, which are a mathematical Seeralisatios of fractals, at least over a wide range of scales .

Brownian motion. With these definitions in hand, we can now address the problem
A random function 1(z) is a fractal Brownian function if for all s of how 3-D fractal surfaces appear in the 2-D image.

and Ar - I( Proposition 1. A 3-D surface with a spatially isotropic fractal S
Pr hi=J < ) - F() (1) Brownian shape produces an image whose intensity surface is fractal

Brownian and whose fractal dimension is identical to that of the corn-

where Fly/) is a cumulative distribution function 171. Note that s and ponents of the surface normal, given a Lambertian surface reflectance
-i 1() can be interpreted as vector quantities, thus providing an extension function and constant illumination and albedo.

to two or more topological dimensions. if 1(z) is scalar, the fractal This proposition (proved in 171) demonstrates that the fractal
dimension D of the graph described by 1(z) is D - 2-H. If H m 1/2 dimension of the surface normal dictates the fractal dimension of the "
and Flyj) comes from a zero-mean Gaussian with unit variance, then image intensity surface and, of course, the dimension of the physical | 0
I(z) is the classical Brownian function, surface. Simulation of the imaging process with a variety of imag-

The fractal dimension of these functions can be measured either ing geometries and reflectance functions indicates that this proposition
directly from 1(z) by using' of Equation 1, or from l(z)'s Fourier power will hold quite generally: the 'roughness' of the surface seems to die-
spectrum- P(f). as the spectral density of a fractal Brownian function tate the "roughness" of the image. If we know that the surface is
is proportionalt to f--n,-1. homogeneous,- we can estimate the fractal dimension of the surface

Properties ofFractal Brownis ! 5ctions. Factal fumetios must by measuring the fractal dimension of the image data. What we have
be stable over common transformations if they are to be useful as a developed, then, is a method for inferring a basic property of the 3-D -

, descriptive tool. Previous reports 16,71 have shown that the fractal surface - i.e., its fractal dimension - from the image data. The fact
dimension of a surface is invariant with respect to linear transforms. that fractal dimension has also been shown to correspond closely to our
tions of the data and to transformations of scale. Estimates of fractal intuitive notion of roughness confirms the fundamental importance of
dimension, therefore, may be expected to remain stable over smooth, the measurement.
monotonic transformations of the image data and over changes of scale. EXPERIMENTAL NOTErFiheen naire subjects (mostly a.n-
A. The Fractal Surface Model And The Imaging guage researchers) were shown digitized images of eight natural

textured surfaces drawn from Brodate [141. They were asked va
Before we can use a fractal model of natural surfaces to help us you were to draw your Anger horizontally along the surface pc-.

understand images, we must determine how the imaging process maps tured here. how rough or smooth would the surface feel?* - i.e.,
a fractal surface shape into an image intensity surface. The list step they were asked to estimate the 3-D roughness/smoothsess of the
is to define our terms carefully. viewed surfaces. A scale of one (smoothest) to ten (roughest) was , .
DEFINITION: A fractal Brownian surface is a continuous function used to indicate 3-D rougbnes/smoothaess. The mean of the
that obeys the statistical description given by Equation (1), with z us subject's estimates of 3.D roughness had an excellent 0.91 correla.

tion (i.e., 83ea of the variance accounted was for) (p < 0.001) with
*We rewrite Equation (1) to obtain the following description of the roughnesses predicted by use of the imalge's 2-D fractaldimeain O

manner in which the second-order statistics of the image chame with and Proposition I. This result supports the general validity of
scale: EEIA.Zl.D II - nllH - E-hei,,..,) whe-e EIIAIe.I) is the ex- Propos ieon 1.
pelted value of the change in intensity over distance As. To estimate
H. and thus D. we calculate the quantities E(IA1&s) for various A, 3. Identification of Shading Versus Texture
and u'e a lea. t-squareq regression os the log of our rewritte Equatin Fractal functions with H f 0 are planar except for random varin.
(I). tions described by the function F(y) in Equation (1). If the variance
"That is. since the power spectrum P(fI is proportional to ,-s-, we of F(y) is small people judge these surfaces to be 'smooth"; thus,

may use a linear regression on the log of the observed power spectrum us the fractal model with small values of H is appropriate for modeling
a function of f (e.g., a regression using log(P(f)) - -(2H+ )og(/)+k smooth, shaded regions of the image. If the surface has significant local
for various values of f) to determine the power H and thus the fractal T n t u rrp
dimension. 'This does not mean that the surfaces are completely isotropic, metly

that their fractal (metric) properties are isotropic.tDiscussion of the rather technical proof of this proportionality may Pera
be found in Mandelbrot 1101. "Perhaps determined by the use of imaged color.

• .• . .. L . .
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fluctuations, i.e., if F(y) is large, the surface is seen as being smooth relationship:
but textured, in the sense that markings or some other 2-D effect is X(-N-L EId2MJ (4
modifing the appearance of the underlying smooth surface. In contrast, 4 =,) E r ) Sld2 Nl) (4)
fractals with H > 0 are not perceived as smooth, but rather s being . t..wca
rough or three-dimensionally textured. where E(r) denotes the expected value [mean of x. That i, we can

The fractal model can therefore encompass shading. 2-D texture, estimate how crumpled and textured the surface is (i.e., the average

and 3-D texture, with shading as a limiting case in the spectrum of magnitude of the surface normals second derivative) by observing

3-D texture granularity. The fractal model thus allows us to make a E(d 2 1/l1).

reasonable, rigorous and perceptually plausible dennitio the cate- Equation (4) provides us with a measure o f 3D texture that is (on ....is.
average and under the above assumptions) independent of illuminant

goring "textured" versus shaded," "rough' vets "smooth,' in terms effects. This measure is affected by foreshortening, however, which acts
that can be measured byv using the image data, to increase the apparent frequency of variations in the surface, e.g., the

The ability to differentiate between "smooth' and 'rough* sur- average magnitude of d2N. We can, therefore, obtain an estimate of
faces is critical to the performance of current shape-from-shading and surface orientation by employing the approach adopted in other texture
shape-from-texture techniques. For surfaces that, from a perceptual work [5: if we assume that the 3-D surface texture is isotropic, the
standpoint, are smooth (H ft 0) and not 2-D textured (VoarF()) surface tilt' is simply the direction of maximum E(IdtI/I) and the
small), it seems appropriate to apply shading techniques.* For sar- surface slant' can be derived from the ratio between max* E(Id21/II)
faces that have 2-D texture it is more appropriate to apply available and mine E(ld'[I/I), where 0 designates the (impliciti direction along
texture measures. Thus, use of the fractal surface model to infer which the texture measure is evaluated. Specifically, the surface slant
qualitative 3-D shape (namely, smoothness/roughnes), has the poten- is the arc cosine of zN, the z-component of the surface normal, and
tial of significantly improving the utility of many other machine vision for isotropic textures zN is equal to the square root of this ratio. The
methods. square-root factor is necessitated by the use of second-derivative terms.

One of the advantages of this shape-from-texture technique is that
MI. Shape Estimates From Texture And Shading not only can it be applied to the 2-D textures addressed by other

The fractal surface model allows us to do quite a bit better than researchers [4,51 (by simply using this texture frequency measure in
simply identifying smooth versus textured surfaces and applying pre- place of theirst ), but it can also be applied to surfaces that are

viously discovered techniques. Because we have a unified model of three-dimensionally textured - and in exactly the same manner. This

shading. 2-D texture and 3-D texture, we can derive a shape estimation texture measure, therefore, allows us to extend existing shape-from- O .

procedure that treats shaded, iwo-dimensionally textured, and three- texture methods beyond 2-D textures to encompass 3-D textures as

dimensionally textured surfaces in a single, unified manner. well.

A. Development of a Robust Texture Measure B. Development of a Robust Shape Estimator

Let us assume that: (I) albedo and illumination are constant in These shape-from-texture techniques are critically dependent

the neighborhood being examined, and (2) the surface reflects light upon the assumption of isotropy: when the textures are anisotopic
isotropically (Lambert's law). We are then led to this simple model of (stretched), the error is substantial. Estimates of the fractal dimension . S

image formation: of the viewed surface [6.71, by virtue of their independence with respect
to multiplicative transforms, offer a partial solution to this problem.

I - pX(N . L) (2) Because foreshortening is a multiplicative eflect, the computed fractal.

where p is sur face albedo, X is incident lux, N is the [three-dimensina] dimension is not affected by the orientation of the surface.t Thus,
wherenit s surface rmalead is incidentuxNisthe [three-dime sionalretor if we measure the fractal dimension of an isotropkally textured sur-
unit surface normal and L is a [three-dimensionall unit vector point- face along the z and , directions, the measurements must be identical. . -

ing toward the illuminant. The first assumption means that the model
holds only within homogeneous regions of the image, e.g., regions evidence of anisotropy in the surface. .... t

without self-shadowing. The second assumption is an idealization of hie to of intn s rc tm
mate ifuel rfecig uraesad fshnysrfcs n eiosthtThis method of identifying anisotropie textures is most effective.

matte, diffusely reflecting surfaces and of shiny surfaces in regins that when each point on the surface has the same direction and magnitude
are distant from highlights and specularities [3. of anisotropy for in these ases we can accurately discriminate changes131

In Equation (2). image intensity is dupeadent upon the surface in fractal dimension between the z and y directions. When the surface
normal, as all other variables have been assumed constant. Similarly, texture is variable, however, this indicator of anisotropy becomes less
the second derivative of image intensity is dependent upon the second useful. Thus, local variation in the surface texture remains a major
derivative of the surface normal, i.e., source of error in our estimation techniques; it is therefore important g

to develop a method of estimating surface orientation that is robust
d- - pX( 5N , L) (3) with respect to local variation in the surface texture.

(Notation: we will write d1 and ON to indicate the second derivn- 'The image-plane component of the surface normal, i.e., the direction
tive quantities computed along some image direction (dg, ld) - this the surface normal would fare if projected onto the image plane.
direction to be indicated implicitly by the context.) ""The depth component of the surface normal.

The fractal model taken together with previous results 1161, implies This measure includes edge information, i.e., the frequency of Marr-

that on average dtN is parallel to N. COnsequently, if we divide Hildreth zero-crossings as we move in a given direction appears to be
Equation (2) by Equation (3) we will on sverage obtain the following proportional to E(r I/I)) along that direction; consider that Marr-

'Indeed, it is only in these cases that measurement noise can be reduced Hildreth zero-crossings are also zero-rosinp of d2I/!,
(by averaging) to the levels required by shape-from-shading techniques ttAt least not until self-occlusion effects have become dominant in the
without simultaneously destroying evidence of surface shape. appearance of the surface.

I S
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Such robustness can be obtained by applying regional, rather than ": "

purely local, constraints. Natural textures are often "homogeneous"
over substantial regions of the image, although there may be significant
local variation within the texture, because the processes that act to
create a texture typically affect regions rather than points on a surface. Figure 3. Tuckerman's Ravine.

This fact is the basis for interest in texture segmentation techniques. I
Current shape-from-texture techniques do not make use of the regional result that

nature of textures, relying instead on point-by-point estimates. By E-liI-l-- MaE(II (6)
capitalizing on the regional nature of textures we can derive a substan-
tial additional constraint on our shape estimation procedure. as the directions of maximum and minimum E(ll) are orthogonal.

Let us assume that we are viewing a textured planar surface whose ate may therefore estimate N the component of the surface

orientation is a 30" slant and a vertical tilt. Let us further suppose Wermay tef- -m

that the surface texture varies randomly from being isotropic to being normal, by • 1/

anisotropic (stretched) up to an aspect ratio of 3:1, with the direction ZN - (7)
of this anisotropy also varying randomly. Such a surface, covered with
small crosses, is shown in Figure 2(a); for comparison, the same surface, where 0 - E(JV2 I/II) and a is the regional estimate of the unforeshor- . -

minus anisotropies. is shown in Figure 2(b). tened value of E(10 21/11). The constant a can be estimated either by
If we apply standard shape estimation techniques - i.e., estimst- the median of the local [apparentlyl unforeshortened texture-measure

ing the amount of foreshortening (and thus surface orientation) by the values, or by use of the constraint that 0 : zN : 1 within the region.
ratio of some texture measure along the lappaentlyl unforahortened The direction of surface tilt can then be estimated by the gradient of
and [apparentlyj maximally foreshortened directions - our estimates the resulting slant field - e.g., the local gradient of the zN values -
of the foreshortening magnitude will vary widely, with a mean error of or (as in other methods) by examining each image direction to And the
6,5v and an rms error of 81,7. If, however, we estimate the value o one with the largest-value of the texture frequency measure. In actual
of the unforshortened texture measure by examining the entire region, practice we have found that the gradient method is more stable.

and then compare this regional estimate to the texture measure along
the (apparently) maximally foreshortened direction then our mean er- D. A Unified Treatment of Shading and Texture

ror is reduced to 40%7 and the rms error to 40%. The fractal surface model captures the intuitive notion that, if
By combining this notion of regional estimation with the texture we examine a series of surfaces with successively less three-dimensional .

measure developed above, i.e.. ElldcJ//), we can construct the follow- texture, eventually the surfaces will appear shaded rather than tex-
in&shape-from-textulre algorithn that is able to deal with both smooth tured. Because the shape-from-texture technique developed here was

two-dimensionally textured surfaces and rough, three-dimensionally built on the fractal model, we might expect that it too would degrade . .. ." -
textured surfaces, and that is robust with respect to loeal variation gracefully into a shape-from-shading method. This is in fact the case: - . - '-+-.
in the surface texture, this shape-from-texture technique is identical to the local shape-from-

shading technique previously developed by the author 1151. That is, we

C. A Shape Estimation Algorithm have developed a shape-from-x technique that applies equally to 2-D

We may construct a rather elegant and elicient shape estimation texture, 3-D texture and shading.
algorithm based on the notion of regional estimation and on the texture As an example of the application of this shape-from-texture-
measure introduced above by employing the fact that and-shading technique.* Figure 3 shows (a) the digitized image of " . .

Tuckerman's ravine (a skiing region on Mt. Washington in New .
d21 dal Hampshire). and (b) a relief map giving a side view of the estimated

-U2 + -2 surface shape, obtained by integrating the slant and tilt estimates."

for any orthogonal ,v. v Thik identity wi allow us to estimate the *This example was originally reported in Pentland 1151 as the output
surface slant immediately rather than having to sea.ch all orientations of a local shape-from-shading technique followed by averaging and in-
for the directions along which we obtain the maximum and minimum tegration. This algorithm is identical to the shape-from-texture tech-
value- of E(ld'1II/I) nique described here; in fact, investigation of the shape-from-texture

Let us assume that we have already determined a - properties of this method was motivated by the consternation caused . . .

minsE(ld'-I/ll) which is the regional estimate of unforeshortened by this successful application of a shading technique to a textured our- .
E(jd2 NI). When the estimate of o is exact, Equation (5) gives us the face.

* t~i
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This relief map may be compared directly with a topographic map of 1151 Pentland, A. P. (1984), "Local Shape Analysis," IEEE Transactions
the area; when we compare the estimated shape with the actual aspe, on Pattern Analysis and Machine Intelligence, March 1984, pp.
we lad that the roll-clf at the top of Figure 3(b) and the steepness of 170-187
the estimated surface are correct for this surface; the slope of this area
of the ravine averages; 60.

Shape-from-shadina dtxuemtoshv a h cin
drawback that they are applicable only to smooth surfaces, while

real surfaces are often rough and crumpled. We have extended these
metod t ralsufaes sig hel~acalsurface model 16,71. The

fractal model's ability to distiaguish succesafully hetwees perceptually
*smooth" and perceptually "rough" surfaces allows relile application
of shape estimation techniques that asume smoothness. Flsrthermorie,
we have used the fractal surface model to construct a metod of es.

*timatiag 3-D saetagrashdigndtexture ia a unified mwner.
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Goal-Directed Textured-Image Segmentation

Kenneth I. Laws
Artificial Intelligence Center
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Abstract

The SLICE textured-image segmentation system identifies image regions that
differ in gray-level distribution, color, spatial texture, or other local property.
This report concentrates on textured-image segmentation using local texture-
energy measures and user-delimited training regions. The SLICE algorithm
combines knowledge of target textures with knowledge of background textures
by using histogram-similarity transforms. Regions of high similarity to a target
texture and of low similarity to any negative examples are identified and then
mapped back to the original image. This use of texture-similarity transforms
during the segmentation process improves segmenter performance and focuses
segmentation activity on material types of greatest interest. The system can also
be used for goal-independent texture segmentation by omitting the similarity- L.......
transform computations, and its hierarchical, recursive segmentation strategy --

integrates very well with other image-analysis techniques. -

1. Introduction

This paper presents a new goal-directed method of textured-image segmentation. The
SLICE segmentation algorithm is one component of a proposed knowledge-based image
feature-extraction system. The algorithm is currently implemented in the SLICE program,
a region-based recursive segmentation system running on the DARPA/DMA Image Under-
standing Testbed at SRI International. The SLICE program is capable of goal-independent
segmentation and other image manipulations in addition to the texture segmentation dis-
cussed in this paper. -.

Aerial images are very difficult to segment into meaningful regions, despite the fact that
humans seem to do this effortlessly. Attempts to develop segmentation algorithms using r
only monochrome input data have had little success. Segmentation using color and infrared

This research was supported by the Defense Advanced Research Projects Agency under Contract .

No. MDA903-83-C-0027. ..
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data has worked somewhat better, but such data is often unavailable. This report describes
techniques for using the spatial textures in monochrome imagery in much the same way
that color has previously been used.

*Image textures arise from many physical sources. Cellular textures are composed of

• ~~~~~~~~ ~~....... ..- .. . . . ..-....... ......-.. ... . ...... ..-......-........ ....-.......... ..... ...... *.-.

repeated similar elements, such as leaves on a tree or bricks in a wall; other texture types
include flow patterns, fiber masses, and stress cracks. A complete analysis of any tex-
ture would require modeling of the underlying physical structures and processes. In most
applications, texture recognition is more important than knowledge of the generating mech-
anism. The algorithm presented in this report can be used for texture recognition and .
material identification when we have knowledge of scene texture types, and for locating and
characterizing textured regions even when we have no such knowledge.

The SLICE algorithm consists of three parts: goal-directed texture transformation,
multiple histogram-based threshold segmentations, and spatial analysis of the proposed
segmentations in order to choose the best one. These steps may be repeated on the newly
found regions to further segment them. A high-level control system could be used to focus
the segmenter's "attention" on important image regions and can determine when to stop
partitioning a given region (using size, shape, homogeneity, semantic, or priority considera-
tions). Regions found by other image-analysis techniques can also be combined with those
found by the SLICE algorithm. . '

This report describes the SLICE algorithm and the rationale for each part of the tech-
nique. Section 2 introduces some definitions used throughout the report. Section 3 briefly
describes the basic texture transforms used to measure local spatial variation around a
pixel. Section 4 discusses maximum likelihood classification methods, and points out why
they are not optimal for texture segmentation. Section 5 presents similarity transforms that _ - -.

can be used to locate desired texture signatures in an image. Sections 6 and 7 describe the . .
integration of texture similarity transforms with histogram-based segmentation to produce
goal-directed segmentation using multiple texture bands. Section 8 then presents examples
of the technique, and Section 9 summarizes the characteristics of this approach. Details of
the modified PHOENIX goal-independent color-image segmentation technique used in the
current SLICE program are presented in Appendices A and B.

2. Background

An image is a two-dimensional array of pixels, where pixels are numbers (usually integers
in the range 0 to 255) or vectors of numbers representing information about an imaged
scene. An image of vector-valued pixels may be thought of as a set of two-dimensional,
scalar-valied layers called data bands. (Indeed, the pixel data is usually stored in this
layered fashion.)

Pixel values typically represent intensity of light (infrared, visible, or ultraviolet) or
other electromagnetic energy reaching a sensor from a point in the imaged scene, but may
correspond to other measurable scene properties. Data bands may also record such com-
puted information as stereo disparity, intensity gradients, filter responses, estimated scene
albedo, or inferred surface slope. In this paper we shall be particularly concerned with
texture bands computed from local texture properties around each pixel.

The integer values that can be assumed by a scalar pixel are called gray levels. Even non-

2
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physical data values such as texture statistics are representable as gray levels or intensities,
since the data bands may be displayed on an image monitor as black-and-white luminance
images. A special type of data band, called a map, stores at each pixel an integer value
representing the material type or other nominal category assigned to that pixel. A aegmen- p
tation map or region map has a unique integer assigned to all pixels in an image region and
different integers assigned to different regions. Segmentation maps are often displayed using

pseudocolor (i.e., arbitrary assigned region colors), since display as a luminance image is
not meaningful.

The value of a pixel is easily read out of the array; all other information about the imaged
scene is implicit. It is the task of low-level image processing to make useful spectral or spatial
information explicit so that the more expensive high-level feature-extraction operators and
reasoning processes can utilize it. This paper will describe a goal-directed method for
extracting homogeneous image regions satisfying prespecified criteria as to size, location,
gray-level distribution, and texture.

3. Texture Transforms

Textures can be recognized if one or more distinctive properties can be measured. (There
are also structural or "syntactic" pattern-recognition methods that do not require texture
metrics.) Many ways of computing texture descriptors have been proposed. Some of the
most powerful descriptors, both individually and in combination, are the texture-energy ..
measures [Laws 801 and their variants [Pietikiinen 82, Harwood 83]. These measures do
not describe texture-generating mechanisms or parameters directly, but do tend to be con-
stant across any perceptually homogeneous texture region and distinct for distinct textures.
(Within macrotextures having large elements they tend to be multimodal with histogram --

peaks corresponding to the edges and interiors of the texture elements.) -- -

Texture energy is the amount of variation within a filtered window around a pixel. A
particular texture energy measure thus depends on the spatial filter, the window size, and

, the method of measuring average variation within the window. The transforms require only
- simple convolution and moving-average techniques; moreover they can be made invariant

to changes in image illumination, contrast, and rotation without histogram equalization or
other preprocessing operations.

There are two required steps in applying a texture-energy transform. The first step is
to filter the original scalar image with a small convolution mask. The mask is typically
a binomially weighted array (defined below) that enhances image spots, edges, or high-

" frequency components. Binomially weighted masks are both separable and decomposable
into smaller convolution masks, making them easy to implement efficiently on a variety of
architectures. The set of filter masks used determines the spatial frequencies or texture
structures that the transforms will measure.

The 3 x 3 binomially weighted masks are shown in Figure 1. They were constructed by
convolving the vectors [ 1 2 1], [ -1 0 11, and [ -1 2 - 1J with their own transposes.1

Larger masks may be constructed by convolving the 3x3 masks with themselves. Binomially

'These vectors are themselves constructed from the vectors I 1 11 and 1 -I 11. The mask names are
derived from the terms level, edge, and spot for the 3-vectors of sequency 0, I, and 2. Similar names are
used for the 5-vectors and 5 x 5 masks, with the addition of W (wave) and R (ripple) for the vectors of

. sequency 3 and 4.
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Figure 1: Orthogonal 3 x 3 Texture Masks

weighted filter masks of sizes 3 x 3, 5 x 5, and 7 x 7 were found to be nearly equivalent in
tests on a very limited class of textures [Laws 801. For aerial image analysis, the 3 x 3 masks
seem likely to be the most useful, although strong patterns such as orchards and crop rows
may be better discriminated using larger masks.

An exponential series of mask sizes may be needed for multiresolution texture analysis.
Application of large binomial weighted masks (with coefficients in the billions) can be very
difficult even if done by repeated filtering with smaller masks. A better method is to
construct a pyramid of image reductions and then apply a single mask size to all levels of the LU.
pyramid. The unfiltered image itself may be used as the highest-resolution "filtered" band, . .

and its local-energy statistics may be useful either as texture measures or for normalizing
the other texture measures when contrast invariance is desired.

The second texture-transformation step is to apply a local-energy operator to the fil-
tered image to produce a texture-energy data band. Texture energy at a point is just the
variance of the filtered-image values computed over a window around the point. Standard L •
deviation, or the square root of the variance, has been found just as effective. For zero-mean
filtered bands, the standard deviation is usually approximated by an average of the filtered-
image magnitudes (i.e., absolute values) over a window. Such averages can be computed by
moving-window techniques that are very fast, even on general-purpose digital computers.

An energy-gathering window of about about five or ten times the area of the filter
mask is recommended; larger sizes give better classification accuracy when applied to large
texture patches but lack the resolution needed for analysis of typical 512 x 512 aerial image
displays. The time required to compute the local energy is independent of the window " :"""-
size, since each pixel is examined only once as it enters the window and once as it leaves.
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(A fading-memory approximation to moving-window averaging can also be used to permit
single-pass computation of texture energy values without storing the intermediate filtered
image.)

Texture descriptors computed with the suggested masks are unaffected by most scene il- P 6

lumination and sensor bias effects because all but the first mask produce zero-mean outputs.
Level-invariant texture energy bands may be normalized by the variance of the unfiltered
image if contrast-invariant texture measures are desired. Pairs of texture energy values
representing directional image structure can also be averaged if rotation-invariant texture
measures are desired. Decisions about when to normalize or average are best left to a
control system capable of reasoning about particular analysis tasks and image context.

4. Maximum Likelihood: The Trouble with Optimal Discrimination

We now have a multiband image composed of luminance or spectral bands and derived
texture bands. We want a quick way to partition the vector-valued pixels into homogeneous
groups, preferably using a priori knowledge of target signatures when it is available. The
texture transforms make it likely that each texture signature in the image will have a fairly
predictable Gaussian distribution in at least one data band. The temptation to jump to
multivariate Gaussian discriminant analysis is almost overwhelming.

There is a good reason for trying other methods, however, even when we have sufficient L -.--

multivariate training data to compute the needed means and variances (or covariance ma-
trices). Maximum-likelihood Gaussian discriminant analysis 2 is optimal for separating two
or more multivariate Gaussian distributions, but we do not have Gaussian distributions as
such-we have mixtures thereof. Even within a single data band we may have at best one
Gaussian and one mixture density to be discriminated.

This is not to say that the discriminant analysis won't work, only that the conditions . ,
for optimality are not satisfied. The procedure for computing discriminant functions will
reduce positive and negative training instances to means and standard deviations, reject
any data bands in which the means and standard deviations are similar, and do the best
it can with a linear or perhaps quadratic function of the means and standard deviations in.
the remaining bands. The result is that much of our knowledge about target signatures in L
different data bands will be discarded.

As an example, consider a texture that is known to have a Gaussian distribution in a
particular data band. Assume that the scene might also contain instances of another text ure
with a strongly bimodal salt-and-pepper distribution. These two distributions should be
easily distinguished, but they may not be discriminable by mean and standard deviation
alone. Ve could use multivariate statistics and compute covariances with data values in
other bands, but the resulting classifier might be unstable and difficult to train. We could
also seek a transform to another data band in which the two textures are separable, but
that will not work if there are other textures that might also be present in the scene.
Discriminant analysis is thus a poor way to deal with this situation.

There is also the matter of a priori probability. Any form of maximum-likelihood classi. L
fier performs best if the decision thresholds are properly adjusted for the a priori probability
of that texture's appearing in the scene. We may be able to guess reasonable probabilities

21.e.. multivariate minimum-distance classification using an inverse-covariance, or Afahalanobis, weighting.
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:.. .. ... ... ... ... ...... ... ... ..



based on previous analyses of similar imagery, but biasing the analysis with such values
instead of just examining the evidence in the image is a suspect procedure. Assigning equal
likelihood to all possible scene entities is even more suspect.

We could live with these problems, but there are better ways of finding and distinguishing ' •
textures. These will be described in the remainder of this paper.

* .. ,...' .o

5. Similarity Transforms: Encoding Goals and Knowledge

The key to efficient goal-directed segmentation is to estimate quickly whether any given - .
pixel is part of the texture or target signature we are seeking. We have already computed
texture bands in order to collapse implicit information about a pixel's neighborhood into 7.
explicit information stored in the pixel's data vector. We now need a scalar measure of
similarity (or, conversely, of dissimilarity) between a pixel data vector and a target signature.

The simplest dissimilarity measure is the Euclidean distance between the image pixel
vector and a prototype vector representing a known texture type or previously extracted A

;' region signature. We could invert this if we wanted a similarity measure. We could also .*-.. ,
weight the component single-band distances differently if we had knowledge that some data
bands were more critical for recognition than others.

The easiest way to determine, or to "learn," which data bands are important is to keep
track of the multivariate statistics within a target population and compare them with the
statistics for other possible scene entities. This leads to Mahalanobis distance as a measure . .....
of dissimilarity between a pixel and a prototype. As discussed above, this would be optimal
for Gaussian distributions, since they are fully characterized by their means and covariances.

It is not necessary to represent a texture prototype by statistical vectors and matrices,
nor is it necessary to specify complex parsing rules. An intermediate strategy is to represent
a texture or target signature by its full histogram in each data band. (A knowledge-based
system would also have rules for manipulating these histograms in accordance with overall
image illumination and contrast; we shall assume here that any required normalization has
been done or will be compensated for during the image analysis.)

Storing histogram vectors as prototypes is very easy for a region-based system because
the region histograms are always readily available. To train the system one has only to trace
or extract a suitable region, assign it a label, and store it in the knowledge base. The only -

complication is that different data bands may be used during different image analyses, so
that prototypes saved during one session may not include the bands needed during another
session. There would also be some difficulty if the same data band were scaled or quantized
differently for each session, but we can usually compensate for such discrepancies. S

Computing similarity between a pixel and a prototype is a bit more difficult than com-
puting Niahalanobis distance. We can split the problem into that of computing similarity
within a given band and that of combining different band similarities into a single overall
similarity measure, although such a two-step procedure is not necessarily optimal.

Consider then the problem of estimating how likely it is that an observed gray level in a
data band came from one prototypical population and not from another. NV- may formalize
and generalize this problem as follows. Given that we have observed a gray level g as an
independent random sample, what is the probability that the source population was one of a
set w of positive exemplar distributions, wi, and not from one of a set 0 of negative exemplar
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distributions, Oj? We shall assume that we know each of the prototype distributions by a
single histogram representing an unbiased sample from some large population. We have,
then, sets of histograms estimating Pr(glwi) and Pr(gl4,) and we wish to compute Pr(wlg).

If we assume disjoint and exhaustive source populations, we can compute the probability p
that the observed sample gray level g came from a positive exemplar source population as
the normalized sum of probabilities for the members of the set:

E i Pr(wilg) -'"",- "'
Pr(wlg) = Z , Pr wg)

EiPr(wig) + Ej, Pr(OjIg)

The denominator should sum to one, given our assumptions, but this formula will work even
if the probabilities are expressed relative to some larger set of disjoint source populations.

Bayes' rule applied to each component term in the summations gives us

P g Ei Pr(glwi) Pr(wi)
Pr(wlg) =i Pr(glw,) Pr(w,) + i:, Pr(gi#) Pr(Oi)

where a term Pr(g) has been canceled from the numerator and denominator. This is the the-
oretical form of the similarity function that we need. If we assume equal a priori probability
for each source population, the formula simplifies to

Ei Pr(glw '<•i-
Pr(wlg)= 'rgw)

Pi Pr(glwi) + Ej Pr(gloj)

Although the current SLICE program makes this simplification, additional knowledge of
the scene domain might provide a better set of weightings.

Now, how do we compute Pr(glwi)? We could simply take the bin count for bin g in the Wi
histogram and divide it by the total number of counts in the histogram. This would have two
undesirable effects: the estimated probability for adjacent bins could vary wildly because
of sampling fluctuations or "picket-fence" quantization effects, and the similarity formula
could not be evaluated for bins that happened to be empty in all prototype histograms.

If the histograms were samples from Gaussian distributions, we could use the sample
mean and variance to estimate the true population bin probabilities for every gray level.
Since we generally have mixture densities, this approach would require that every prototype
texture histogram he decomposed into component Gaussians. While this is difficult, it could
be clone (at least approximately) either automatically or interactively at the time a texture
prototype is entered into the system's knowledge base. We note that this is an optimal
solution, but will now proceed to develop a much simpler heuristic approximation.

If a distribution is known to be Gaussian, we achieve the greatest predictive power by
using techniques appropriate to that parametric form. If we have no knowledge of the .-.-

parametric form, we can still treat the histogram as a sample taken from a multinomial
distribution having unknown bin probabilities. 7. %

An observed bin probability, Pr(gl~w), is an unbiased estimate of the true bin proba-
bility in the sampled population. It is not, however, the best estimate of that generating
probability, given that a sample has been taken. An example may clarify this somewhat
difficult concept. Suppose that we have formed our prototype histogram by sampling a
single pixel. We shall then have a single populated bin and 255 empty bins (assuming 8-bit
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quantization). Are we then willing to say that our best estimate for the population distri-
bution is a spike at the observed gray level and zero probability of any other value? No, we
would wish to be more conservative, even if we were not assuming an underlying Gaussian
model..

Our intuition serves us well here. Bayes showed in 1763 that the a posteriori probability
of a given multinomial bin-generating probability, given an observed histogram, has a beta
distribution, which is a continuous distribution resembling a skewed binomial [Jaynes 83J. •.

The mean, or expectation, of this distribution is [Abramowitz 64, p. 930-

observed bin count +1 
number of bins + number of samples

Using this as our Pr(glwi) has the effect of smoothing the population histogram estimate
slightly by adding a fractional count to each bin. This permits us to compute our similarity
measure even for bins that are to be empty in all prototype histograms.

The similarity function is now optimal for multinomial distributions, but not for Gaus- - .
sian mixture densities. It fails to allow either for the strong correlation between nearby

- bin counts that is due to the component densities or for the exponential decrease in bin
frequency as a gray level is chosen farther from any histogram peak. The first effect is partic-
ularly noticeable when the training data contain regularly spaced empty bins resulting from
a sticky quantizer bit or from contrast stretching that introduced a picket-fence envelope. .9

While we can imagine separating two textures by their differing picket-fence characteristics
(i.e., by trivial differences in gray levels), this is not the type of behavior we want to build
into our image segmenter.

The solution, short of actually finding the component Gaussian densities, is simply to
smooth the histograms. The SLICE program uses a binomial kernel (this is the best discrete
approximation to a Gaussian) with a standard deviation of 1, 3, or 5 pixels. Histogram
counts are scaled by 1000 so that fractional bin counts can be represented; this scaling must
be compensated for when computing the similarity transform. -

The above smoothing extends each tail of a histogram peak for a dozen pixels or so,
i then drops to zero. The multinomial bin correction that is subsequently applied will lift .. -

this slightly above zero, but by an amount that does not vary with distance from the S
-* histogram peak. This causes undesirable behavior of the similarity transform for gray levels

near the ends of typical histograms. Consider the case of a very sharp Gaussian peak for
our positive exemplar and a broad peak or mixture density for our negative one. Further
assume that the positive-exemplar histogram contains only a few hundred pixels and that
our negative exemplar is based on a very large sample, typically the entire image we wish
to segment. We would expect that image pixels far from the positive exemplar peak would
have very low similarity to that texture type because the associated Gaussian distribution
would have a very sharp exponential decay. Instead we compute a high similarity because
the multinomial correction for a histogram with few counts is a much larger number than

6 that for a histogram with many.
This leads to one more adjustment, a factor that provides exponential (i.e., Gaussian)

decay in the multinomial correction as we select bins farther from the nearest or broadest
peak in a histogram. There is no need to be precise here, so we can use an approximation
based on the distance to the lowest or highest count in the smoothed histogram. Only the
multinomial correction is applied for gray levels that are between these two limits. For
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p, 0

pixels outside the observed sample range, the I in the multinomial correction is replaced
by exp(- 2), where d is the distance to the nearest bin in the observed range and w is the
number of bins in that range.

6. Goal-Directed Segmentation

We now have a rapid method of computing the similarity of an observed gray level in an
image band to a set of positive exemplar textures (or target signatures) with respect to a set
of negative exemplar textures. We can apply this function efficiently by precomputing the . •
similarity measure for every possible texture-band gray level and then looking up each image
pixel's value in the resulting table of values. We shall usually have a particular texture or
target signature as a positive exemplar and shall use the full image (or region) histogram as a
negative one. (This implicit inclusion of the texture we are seeking in the negative-exemplar
histogram will not cause problems unless it is a major component of that histogram. If it is,
we might first suppress that component of the negative-exemplar histogram by subtracting t .
a multiple of the positive-exemplar histogram. The SLICE program does not yet include
such a correction procedure.)

Our problem, then, is to select a similarity threshold that will separate all (or at least
most) of the instances of our target texture from instances of all other textures. If multi-
ple similarity bands are available, we should either select the best band for our threshold , .
segmentation or combine the information in all the bands. This section describes a seg-
mentation method capable of selecting the best similarity band for extracting examples of
the target texture and of recognizing those cases in which no satisfactory threshold can be
found. The next section will discuss other methods of combining information from multiple
similarity bands.

For any texture band, the computed similarity value for each pixel should ideally be L .
near 1.0 for the texture we are seeking and near 0.0 for the textures specified as negative
training examples. The actual separation for any real data band will be less, and some
texture bands may fail to discriminate the training textures at all, but a decision threshold
at 0.5 should separate our positive and negative training textures if they are indeed dis-
criminable. Decision thresholds above or below 0.5 could also be chosen; this is equivalent
to adjusting the a priori source-class probabilities, Pr(w) and Pr(O), that are implicit in
the similarity transform. (We can no longer second-guess the relative proportions of the
population probabilities, Pr(wi) and Pr(4. ), within the source class probabilities. Such
fine control is not needed, however, particularly since we rarely require multiple positive or
negative exemplars.)

"Unexpected" or unmodeled textures in the image should have similarity values in be-
tween the extremes for the training texttres. The [eight-bit] histogram of a similarity band
typically has a very large peak at the low-similarity end (representing image gray levels that
were common in the negative-exemplar textures) and a spread of higher-similarity spikes
that look rather uniformly distributed. Smoothing the histogram (with a Gaussian kernel
of standard deviation 5 or less) typically reveals that this high-similarity energy consists L
of a few Gaussian clusters representing image regions that are fairly similar to the positive
exemplar.

Segmenting this smoothed histogram is usually quite easy. The SLICE program cur-
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rently uses a version of the PHOENIX histogram-based segmentation algorithm (docu-
mented in Appendix A) to find suitable thresholds. We may want to select just the peak
of values most similar to the training texture, although thresholding anywhere above the
large peak of least-similar values will generally produce a good spatial segmentation of the
image. We may also select multiple thresholds that will isolate other peaks in the histogram
and thus extract image regions with other textures as well. It is this capability that makes
SLICE a segmentation algorithm rather than just a classification algorithm.

The above procedure works if it is possible to find even one peak in one histogram that

is reasonably well separated from other peaks. In practice, there can be as much as a 25%
overlap between two Gaussian peaks and the segmenter will still find reasonable subregions
in the image. There will be times, of course, when the histogram-segmentation algorithm
fails to find any segmentable peaks in the similarity-band histogram, particularly when
we are trying to segment a whole black-and-white image or a low-resolution texture data
band. The segmenter will find that a region is uniform and unsegmentable, but higher-level
knowledge may suggest that this is false. The current SLICE program is not able to proceed
automatically in such cases, but any of the following techniques could be invoked:

9 Try again with relaxed parameters for the peak-finding heuristics. The SLICE pro-
gram currently uses the PHOENIX histogram-partitioning heuristics with the "niod-
erate parameter settings developed during the SRI evaluation of that package for
the DARPA/DMA Image Understanding Testbed. These smoothing parameters and
heuristic criteria could be successively weakened until peaks are found in the his-
togram.

* Compute additional data-band transformations such as pairwise ratios or combina-
tions of existing data bands. Any oblique cut through the multidimensional histogram I .
space is likely to resolve at least one histogram peak. Computation of such a data
band and histogram does not take long, particularly if only a small region is involved.

* Compute a multidimensional histogram from multiple data bands and apply cluster

analysis techniques to find discriminable subpopulations. Combining two bands in
this way produces a two-dimensional histogram that can be analyzed by means of k -

image partitioning techniques [Nagin 77, 78]. The SLICE system itself might be used
to find populated areas of the bivariate histogram.

- Threshold the image region at arbitrary levels, e.g., at histogram quartiles or deciles,
and use spatial analysis (including noise suppression) to recover subregions that can
later be renierged or edited. This option is available in the SLICE program and works
surprisingly well.

Partition the region at arbitrary spatial boundaries, segment the pieces, and then
remerge or edit subregions along the boundaries [Robertson 73, Horowitz 74, Price 76].

. Switch to a different histogram-segmentation method, such as minimal-spanning-tree . .5
analysis or relaxation-based peak sharpening [Bhanu 82].

• - e Switch to an entirely different segmentation approach, e.g., region growing from ho-
-% mogeneous seed areas within the region.
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Any of these methods, and no doubt others, will move the segmenter off "dead center' when
segmenting a complex region is imperative. Once partitioning is started, subregions that '
are themselves composite can usually be segmented with ease.

Once distinct histogram peaks have been found, the segmentation algorithm finds corre-
sponding regions in the image by simple threshold segmentation and connected-component
extraction. It then computes a quality score for the spatial segmentation based on the - .

percentage of small "noise regions" produced. This quality score can be used to select the
best of several competing similarity-band segmentations. Better quality scores could be . "
computed from region shapes and other high-level or goal-directed criteria. I

The current SLICE program includes an optional screening of extracted regions based on
spatial adjacency. Frequently the user wishes to "grow" an identified image region (e.g., one
that he has traced with a pointing device) instead of finding all other similar pixel patches
in the image. After connected-component extraction, the SLICE program can suppress any
region that is not touching or nearly touching the initial prototype. Connected components
are again extracted and the analysis proceeds. The final step in the growing process is to S
merge the regions found with the original training region.

7. Multiband Similarity: Putting It All Together

The previous section described a method for finding image regions corresponding to L .

peaks in a similarity-band histogram. The implemented segmentation algorithm is able to
select the best of several competing similarity bands by comparing the identified histogram
peaks and quality of spatial segmentation produced by each set of similarity-band thresh-
olds. This approach is typically useful in cueing applications when searching a scene for
textures that might differ considerably from stored prototypes. Using this technique, a
target region distinguishable in even one data band can be segmented from its background
and passed up to a higher-level reasoning system for confirmation. The method also works
well with multiple data bands containing essentially the same information, since slight dif-
ferences in the information content might lead to better segmentation in one band than in
the others.

Another approach, also available in the current SLICE program, is to combine the
4-imilarity bands computed from different luminance or texture bands into a single overall
similarity band. This is appropriate when we are very sure that our prototypes are repre-
sentative. as when we are trying to find a homogeneous texture region around a traced seed
region. Under these conditions we can assume that all instances of the target texture will
look very similar to the training texture in all transformed bands-if a subregion differs
significantly in even a single band it cannot be from the target population. "- .

\We might use factor analysis or discriminant analysis to devise an optimum weighting .
function for combining the similarity bands. Such a function would no doubt be task-
dependent and image-dependent, making it very difficult to assemble sufficient training " "
data. A simpler solution is to construct the composite similarity band from the pixel-
by-pixel minima of the component similarities. This combining function is often used in .
fuzzy-set theory. It correctly reflects the assumption that target textures should behave
just like the prototype texture under any transformation, but has the negative effect that
we cannot recover from a prototype that is unrepresentative in even a single data band.
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(a) E5 * L5 Energy (b) RS* R5 Energy

L

(c) E5 * S5 Energy (d) L5 * S5 Energy

Figure 3: Texture Energy Bands

difficult to discern. A full parse of the scene would detect and identify all of these entities. .
Our concern here will be the extraction of all the tree regions, perhaps as a preliminary
to extracting other objects in the scene. We shall first trace the process of "growing" tree -

regions from user-selected examples and shall then examine the output of a more general
ifinding- or cueing algorithm.

Extraction of the trees in this image by interactive threshold segmentation is not difli-
cult. The trees (or perhaps bushes) are distinguishable by their gray-level signatures in the
original image. An image-understanding system would not know this a priori, however, but
would have to extract and identify at least some of the trees and then estimate whether it
could extract the rest. The system could search for good tree regions by experimentation
with different thresholds [Selfridge 82], but the methods presented in this paper are more
efficient. _ S

Trees presumably have distinctive texture signatures in addition to their gray-level sig-
natures. Figure 3 shows four texture bands selected front the texture energy set. These
were computed with 5x 5 filters masks and 15 x 15 "absolute average summations. (At this
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image resolution, the 3 x 3 filter set would probably have worked better.) Each texture band
highlights different characteristics of the original image. The four texture bands used here
are the same ones selected in the development of the texture energy measures [Laws 80).
although there is little reason to believe that this is the best subset or even an adequate
subset for image analysis. The selected filters respond primarily to horizontal edges, high-
frequency variation, medium-frequency diagonal structure, and narrow or high-frequency
vertical structure. The data bands have been normalized for image contrast, but pairs have
not been combined to form rotation-independent texture bands.

Goal-independent analysis of the original image, using the PHOENIX segmentation -

algorithm (and skillful setting of its numerous parameters), leads to isolation of most trees
in the scene. These regions are not the first to be reported by the segmenter, however,
nor are they the last. The user or high-level control program must somehow select the tree
regions from among the hundreds of reported regions. This is made more difficult by the fact
that most of the scene is very poorly segmented by the PHOENIX algorithm, with region
boundaries crossing homogeneous fields and with parts of house roofs cut off and grouped
with surrounding fields. Adding computed texture bands to the original black-and-white
band degrades performance: areas around building edges are identified as homogeneous
regions and several scattered patterns of trees interspersed with grass are also extracted as
regions. (The latter effect is useful, but not as useful here as finding the individual trees.)

Goal-driven segmentation with the SLICE algorithm begins with the selection of training
areas. A sophisticated system might have adequate tree templates stored in its knowledge
base. Hlere we depend on the user to select representative training regions. Large samples
work better than small ones, but we will demonstrate the technique with the two small
training areas in Figure 2. A negative training region containing a strong shadow and a
mixture of other scene textures is also shown; the remainder of the image outside the three L .. 0 ..
traced areas will be used as a second negative training region.

The two positive training regions were carefully selected. The upper-right region is a
nearly minimal sample such that the SLICE program's "grow" command will extract the
entire clump of trees extending from the upper-right corner diagonally downward toward
the bottom edge of the second training region. The second region is also a nearly minimal
sample such that the "grow" command will extract all tree clumps touching the region.

Rather than witness these feats, we will now examine performance when both regions are
sought simultaneously and the upper negative training example is also specified.

Figure 4(a) shows the histograms of the training regions together with the histogram
of the remainder of the image. We can see that both tree regions have similar histogram,.
although they differ in detail. The negative training region has three peaks corresponding .
to a shadow, the house roof plus driveway, and the lawn and car. The histogram for the 7

rest of the image contains some dark pixels from trees and shadows and many light pixels
from other scene components.

Figure 4(b) shows the resultant gray-level similarity transform for this black-and-white
image band. Similarity is highest for those pixels corresponding to trees, despite the negative
effect of tree regions in the whole-image histogram. The similarity transform shows a very
slight dip for shadow pixels and a much stronger dip in the house roof interval. The least-
similar gray levels are those occurring in the image but not in either positive training region.
The similarity function increases again for very bright pixels: these are absent in all image
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(a) Training Histograms (a) Training Histograms

(b) Similarity Transformation (b) Similarity Transformation

(c) Similarity Band (c) Similarity Band

Fig-ure 1: Original Image Analysis Figure 5: R5 *R5 Texture Band .. nalvsis
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regions and hence need not concern us.
Applying this transformation to the original image produces the similarity data band

in Figure 4(c). Trees, shadows, and a very small number of other scene objects have
been highlighted. We can easily extract trees from this transformed band, and such a
segmentation will be presented in Figure 8. For now, let us continue trying to "grow" our
training regions using multiband similarity.

The SLICE program is capable of using any number of texture bands as additional
inputs. For demonstration purposes, we shall limit it to just the band of Figure 3(b). This
band tends to show trees as dark regions, although the effect is not strong. Any of the other
texture hands might perform as well or better.

Figure 5(a) shows the training histograms for this band. Note how strongly the negative
training area histogram matches that of the positive training areas. Use of the negative
training example actually degrades segmenter performance in this case, albeit only slightly.
(In other situations the "caution" introduced by this overlap might prevent the segmenter
from making bad decisions.) We could reduce the degradation by giving the negative
example less weight than the histogram of the area to be segmented, but the knowledge-
based mechanisms needed to make such decisions have not been included in the SLICE
program.

Figure 5(b) shows the similarity transform computed from the training histogram. It _, .
shows a preference for dark pixels, but is not very specific. This leads to the texture- L .
similarity band of Figure 5(c), which we can see will not lead to a good segmentation of the
image. The segmentation program has no such perception, however, and must somehow
determine that it should reject most of the "information" in this computed band.

The method of combining similarity functions that we will use here is to take the pixel-
by-pixel minimum of all similarity bands. This combined transform function can be corn-
puted from the individual similarity transformations rather than from the similarity data
bands. thus saving considerable computation. The result of applying this combined simi-
larity transformation to the original image may be seen in Figure 7(a). It is similar to the
similarity band for the black-and-white data band, although more intermediate gray levels
are present.

Figure 6 shows both the smoothed and the unsmoothed histograms of the merged Sim-
ilarity band. There are several clusters in this one-dimensional space, and any to the right
of the main histogram peak could represent the trees we are seeking. An intelligent sys-
tern would investigate several thresholds or would use several thresholds simultaneously.
The current SLICE algorithm simply chooses the threshold that best survives its screening
heuri!4tics -in this case perhaps a rather poor choice. Figure 7(b) shows the spatial result 6
of applying this threshold. The trees are indeed found, but so are driveways, road patches,
and other (lark image regions. There has also been a blurring effect because of the 15 x 15
window used to compute the texture energy band.

Our current task is to "grow" the original sample regions to their full image extent,
rather than find more distant matching regions. A simple spatial analysis can thus be
employed to eliminate all regions not touching the original training regions. (The current
criterion is that the rectangle enclosing a candidate region must come within one pixel of
touching a rectangle enclosing one of the positive training regions. This allows for small
breaks in our extraction of a scene object and permits a higher-level process to determine .....- .
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(a) Gray-Level-Coded Region Map (b) Region Outlines

Figure 8: Regions Found by Similarity-Band Selection

whether nearby regions should be merged or discarded.) Candidate regions smaller than
some threshold, here set at five pixels, are also discarded as probable noise regions. 0

Figures 7(c) and 7(d) show the result of this spatial screening. The segmenter has done a
good job of expanding the initial sample regions, although the lower-left region has absorbed
part of all adjacent house roof. The upper-right tree clump has been found, but includes
pixels from the surrounding field that would not have been included if the inherently blurred
texture band had not been used (or if the final similarity histogram had been thresholded at
a higher gray level). Two additional large regions, both containing trees, are found because
of the gray-level and spatial interactions of the two sample regions. They would not have
been retained if the two training regions had been grown independently.

This concludes the presentation of the goal-directed region-growing technique used in
the SLIC +E program. We have seen how the algorithm is able to overcome difficulties such
as small positive training regions; negative training regions that are unrepresentative (i.e.,
badly weighted) and include the very pixels we are trying to find; blurred, poorly chosen.
or ntiinformnative texture data bands; ad hoc similarity combining functions; and poorly
chosen thresholds. As knowledge-based techniques are developed and refined, some of these
difliculties will be eliminated and performance enhanced commensurately. I 0

A final example of the power of the SLICE goal-directed approach may be observed in
Figure 8. which shows the effect of the SLICE program's 'find command when the same
training regions and texture band are employed. This algorithm differs from region growing
only in the sinilarity combining function and spatial screening. Instead of combining the
computed similarity bands, each is analyzed separately and the one with the least "noise 0
area- is selected. The texture data band is thus rejected and only the original black-and-
white image is employed. Shadows and a few other undesired dark areas are found, but
essentially every tree over five pixels in area is identified. This leaves very little work for a
higher-level verification process to perform.

S
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9. Conclusions

The SLICE segmentation system is one of several existing systems for segmenting digital
images recursively. Its major contributions are computation of a nearly optimal texture- 0

similarity function and integration of this approach with a robust segmentation system to
permit both goal-directed and goal-independent textured-image partitioning. Some of the
advantages and disadvantages of the SLICE algorithm are listed below.

. The SLICE goal-directed segmentation algorithm uses multispectral or "multitextu-
ral" input to extract precisely those scene objects of most interest. If it fails, repeated
attempts with relaxed constraints may locate candidate regions. If it succeeds, it
generally produces high-quality regions that require little postediting. Provision for
negative training examples permits easily confused material types to be separated
early in the analysis process.

e SLICE, like other region-based methods, always yields closed region boundaries. This
is not true of edge-based feature extraction methods, with the possible exception of
boundary following and zero-crossing detection. Closed boundaries, the essence of-.
segmentation, greatly simplify other image analysis tasks such as material identifica-
tion and object mensuration. The resulting regions provide meaningful entities for a
human or high-level control system to reason about and manipulate. L 0

9 SLICE is a hierarchical or recursive segmenter, which means that even a partial seg-
mentation may be useful. This can save a great deal of computation if efforts are
concentrated on image regions in which further segmentation is critical. If a full goal-
independent segmentation is desired, however, other methods of segmenting may be -

more economical. L

SLICE is relatively insensitive to noise because noise tends to average out in the region
histograms used to select thresholds. This contrasts with edge-based methods, as the
local analysis they require can be highly perturbed by noise.

e SLICE currently has no notion of boundary straightness or smoothness. This may be L _-A
either good or bad, depending on the scene characteristics and the analysis task. It
easily extracts large homogeneous regions that may be adjacent to detailed, irregular
regions (e.g., a lake adjacent to a dock area or the sky over a complex skyline);
such tasks can be difficult for edge-based segmenters. Boundary aesthetics and other
semantic criteria can be incorporated as part of either an editing process or knowledge-
based control structure.

e Region-based segmenters may fail to detect even long and highly visible boundaries
between two large, similar regions if the region textures cause their histograms to
overlap. The use of texture bands reduces this problem because the boundary re-
gion itself forms a distinctive texture. Hypothesis-driven edge-based methods may be
required to confirm such boundaries.

SLICE tends to miss small regions within large ones because they contribute so little
to the composite histogram. It is thus poorly suited to goal-independent detection
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of vehicles and small buildings in aerial scenes, although the use of multiple texture
bands alleviates this deficiency. Goal-dependent selection of search areas and texture-
similarity transforms will help to locate small objects even against backgrounds of
similar gray level.

SLICE also tends to misplace the boundary between a large region and a small one,
thus obscuring roads, rivers, and other thin regions. Boundaries found by edge-based
methods are less affected by distant scene properties, but work poorly if not adapted
to the statistics of the regions being discriminated. An edge-based postediting of the
region boundaries found by SLICE may combine the best of both approaches. .

e SLICE requires multispectral input or multiple texture transforms for effective opera-
tion. Edge-based and valley-seeking or spanning-tree techniques are better adapted to
operation in a single data band, and thus require less computer memory and possibly
less processing time.

Selection of a segmentation algorithm should depend on the task to be performed.
The SLICE segmentation system is a convenient testbed for integrating diverse feature-
extraction techniques and experimenting with knowledge-based control structures.

Appendices

A. The PHOENIX Segmentation Algorithm

The SLICE segmentation algorithm incorporates the PHOENIX color segmentation al-
gorithm developed at Carnegie-Mellon University [Shafer 82, Laws 82). This is a sophisti-
cated method of hierarchical region extraction based on region statistics and user-specified -
parameters. It does not use explicit knowledge about the types of data bands it is given . -.

nor about the scene objects being sought.
Each object or object part in a scene is assumed to form a nearly uniform patch in the e-

image, with a noisy Gaussian peak in any single-band histogram. Decomposing a function
into Gaussian peaks is known as the mixture density problem [Wolfe 70] and is important in
information theory, statistics, chemistry, and other fields. Very little of this theory has been
applied to image processing [Chow 70, Rosenfeld 76, Postaire 811. The PHOENIX/SLICE . . .
algorithm segments mixture densities by identifying the most obvious thresholds in any
of the data bands, then using spatial-analysis "look.ahead* before confirming a candidate S
threshold. The algorithm does make slight errors in threshold placement, however, leading
to the breakup of some small regions and a shifting of the boundaries of others.

Ohlander and Price used a hierarchy of heuristic rules for selecting the most prominent
peak within a set of histograms [Ohlander 78, Price 79, Nevatia 821. PHOENIX uses similar
heuristics, but concentrates on the valleys (i.e., local minima) in the histogram set. Usually a L 1b
single valley, resulting in one threshold and two intervals, is selected for each feature. Spatial
analysis is then employed to select the best threshold/data band combination. Using only
one threshold per pass reduces the chance of segmentation errors, although it does increase
the number of passes required.
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Histograms can be treated as one-dimensional images and can be segmented by almost
any image segmentation method. The PHOENIX histogram-analysis component uses an
interral-merging strategy. Each single-band histogram is first smoothed with a binomial
or Gaussian smoothing kernel having a standard deviation gsmooth- typically 3, and
ranging from 5 for coarse segmentation down to 2 for more detailed segmentation. (The
original PHOENIX algorithm used a simpler unweighted moving average.) The histogram
is then broken into intervals in such a manner that each begins just to the right of a valley
(i.e., at the next higher intensity), contains a peak, and ends with the next valley. A valley
is considered to be the right shoulder of its left interval and the left shoulder of its right
interval. The leftmost and rightmost intervals always have exterior shoulders of zero height.

A series ef heuristics is then applied to screen out noise peaks. Each test is applied to
all the intervals in the histogram. When an interval is eliminated, it is merged with the
neighbor sharing the higher of its two shoulders. The screening test is then applied again
to the merged interval. (Previous tests are not reapplied.) .

Peak-to-shoulder ratio is tested first. An interval is retained only if the ratio of peak ." 9
height to the higher of its two shoulders, expressed as a percentage, is at least as great as
the user-supplied maxmin parameter-typically 160%, and ranging from 300% for "strict'
screening down to 130% for "mild" screening.

Peak area is then compared with an absolute threshold, absarea, and with a relative
threshold, relarea, representing a percentage of the total histogram (or region) area. Only
peaks larger than these thresholds are retained. Absarea is typically 30 pixels, ranging
from 100 pixels down to 5 pixels; relarea is typically 2%, ranging from 10% down to 1%.

The intervals surviving to this point should be reasonable candidates, and it is fairly
sale to use global histogram descriptors in the test conditions. The second-highest peak
is now found, and those peaks whose height is less than a percentage, height, of it are
merged. The lowest interior valley is then found, and any interval whose right shoulder
is more than absmin times that valley height is merged with its right neighbor. (The
parameter appears to be misnamed, since the criterion is relative rather than absolute.)
Typical values of these parameters are 20% and 10 pixel counts, ranging from 50% to 10%'(
and 2 counts to 30 counts.

A final screening is performed to reduce the interval set to intsmax intervals. This is .
done by repeatedly merging regions with low peak-to-shoulder ratios until only intsmax- I
valleys remain. Intsmax is typically set to 2 to force the highest-quality segmentation
during each pass, although higher values could save considerable computation time.

A score is also computed for each interval set as a whole (in relation to the interval sets
fur other data bands). This score is the maximum over all intervals of the function

peak height - higher shoulder
peak height

This formula assigns the maximum score to an interval set containing a peak with shoulders
of zero height. Interval sets with scores less than absacore or less than relscore percent
of the best score for all data bands are rejected. Abucore is typically 700, ranging from
9'25 down to 600; relscore is typically 80%, ranging from 95% down to 65%.

If more than isetsmax data bands are still candidates for segmentation, the excess ones
with the lowest scores are now dropped. This parameter is typically 3 and ranges from 2
to 5. Remaining data bands and interval sets are passed to the spatial-analysis subsystem.
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Ilistogram segmentation is a heuristic technique that sometimes misses good thresholds
and sometimes chooses bad ones. Some protection is provided by examining segmentations
of several different data bands and choosing the best. Regions smaller than the noise
threshold are merged back into their parent regions and bands producing region segmenta-
tions with more than retain percent of their area so merged are rejected. These parameters --

are typically 10 pixels ranging from 50 pixels down to 5 pixels, and and 20% ranging from
4 , to 40"Z. The remaining segmentation producing the lowest noise percentage is then se-
lected and instantiated in the data base. All resulting subregions are scheduled for further -

attempted segmentation provided that their areas are at least splitmin pixels-typically .
40 pixels and ranging from 200 pixels down to 20 pixels.

No single threshold is going to result in perfect segmentation when the histogram peaks
overlap. We might instead use two thresholds-one low enough to catch all of the higher
peak and another high enough to catch all of the lower peak-then ascertain from the image
which threshold is correct for extracting each subregion. In practice, most of the small noise
p fches that result from a slightly offset threshold are easy to identify and absorb into the
surrounding subregions. The noise-cleaning process leaves only the exact placements of
the subregion boundaries in doubt, and these can be better determined in a postediting of
adjacent region pairs than through clever partioning of a multiregional histogram.

B. Spectral Transforms for Color Segmentation

Color bands are needed when two regions to be distinguished have similar texture (in-
eluding intensity), but. different hue or saturation. Transformations of these bands can
sometimes be used to separate pixel clusters that project to overlapping or confounded his-
togram peaks in the original spectral data bands. Similar band combinations may be useful
for segmenting texture bands or other nonspectral data bands.

Color transformations are not currently implemented as part of the SLICE program,
but transformed data bands computed off-line can be used to improve its operation. The
segmentation algorithm currently makes no distinction between color bands and other types
of data bands, although the associated display routines do make such a distinction.

Color bands for image processing research are typically generated by scanning a color
photograph through filters (e.g., Wratten filters 25, 47B, and 58) to get red, green, and blue
(RGB) data bands. Real-time systems often use an electronic color camera to generate ." -"-

equivalent Y IQ3 bands that correspond roughly to perceptual brightness, cyan vs. orange,
and magenta vs. green. The following discussion assumes that the primary input is in RG B
coordinates, but converting to or from other color coordinates is fairly easy.

Each color system constitutes a three-dimensional chromatic space that can expre, -,
"most of the colors perceived by humans. (The detailed spectrum that astronomers and ot her

physical scientists depend upon has been lost, just as it is in the human visual system.)

A few purples and highly saturated colors are not precisely representable and the colors
recorded with different films or cameras may differ, but the tricomponent representation is t t
adequate for most purposes.

"YIQ is the National Television Systems Committee (NTSC) color coordinate system. The perceptual
brightness, or Y, chromaticity band takes its name from the XYZ chromatic primary system of the Com-
mission Internationale de I'Eclairage. I and Q are the NTSC in-phase and quadrature signal components.
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Typical quantization is eight bits per color axis, or 16.8 million cells for an entire three-

dimensional color histogram. Cluster analysis in such a space is not attractive, although
methods of multidimensional pattern recognition are available. The SLICE package instead
uses an adaptation of a one-dimensional histogram partitioning method implemented in the ' .
CNIU PHOENIX program [Tomita 73, Tsuji 73, Ohlander 75, Shafer 82, Laws 82].

Any one-dimensional histogram is equivalent to a projection of the three-dimensional
data onto a line (or curve) through the chromatic space. If the scene contains many regions,
their histogram peaks are likely to overlap and obscure any useful details in the composite
histogram. The overlap is different for projections at different angles, and it is often possible
to isolate peaks from some of the regions by using many projections.

Ohlander used RGB, HSD4 , and YIQ projections, but many other color coordinate
transformations are possible. The HSD coordinates were introduced by Tenenbaum et al.
[Tenenbaum 74a, 74b] to mimic human color perception. They are

H arccos G) +(R -B) t .
2v(R - G)(R- G) + (R- B)(G- B)

.( 3m-in(R-'G-'B)l

S ~ + RiG + B

D = (R+G+B) L S
3

where Yn is the maximum desired saturation value. Hue is normalized by subtracting it
from 2T if B > G; some care must be taken in rounding the values near 21r if the number is

quantized. Note that these formulas contain singularities that are due to division by zero,
and thus exhibit unstable segmentation behavior near the D axis.

The YIQ coordinates used in color television transmission are

Y = 0.509R+ 1.000G+0.194B
I = 1.000R - 0.460G - 0.540B + Al
Q = 0.403R - I.OOOG + 0.597B + Al

where M is the highest possible intensity value in the original RGB features, typically 2.-.. •.
These formulas have been linearly scaled to maintain quantization accuracy (via the ueit
coefficient). M is added simply for convenience in digital representation. (The Q feature
can be negated before adding M to better match the green gun on a color monitor.)

Kender analyzed the color transformations used by Tenenbaum and Ohlander and--
showed that inherent singularities and quantization effects were capable of introducing false ,
histogram peaks and valleys ( ender 76, 771. This effect is particularly noticeable in the
hue feature, but also affects saturation and other normalized chromaticity coordinates. lie
recommended that saturation be ignored in regions of low luminance, with hue ignored in
low saturation as well. The YIQ transform was found to entail fewer problems, although
its usefulness in segmentation was not evaluated. Kender also proposed an improved corn-
putational algorithm for hue.
4The HSD, or hue-saturation-intensity, color coordinate system is also known as the HSI or IHS system.
The symbol D is used here for intensity to avoid confusion with the VIQ system. It comes from density,
a measure of the amount of silver deposited at a given point in a photographic negative.
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Ohta et al. have further investigated color transforms for recursive segmentation 7

[Ohta 80a, 80b. They computed color histograms by using the Karhunen-Loeve color
transform-an expensive method because the transform is different for each region. Ohta
found that the principal transform axes typically clustered around

I = R+G+B

2 = R- B
13 = 2R-(G+B)

and recommended that these features be employed. (The second and third features may be
negative, so that either an offset becomes necessary or the segmentation code must be able
to handle negative pixel values.)

Ohta's transform is similar to the YIQ system, as well as to the "opponent" color
process recommended by several authors [Sloan 75, Nagin 78]. The transform is linear
and hence avoids the instabilities that Kender found in saturation, hue, and normalized t . .
chromaticity coordinates. Nagin expressed some theoretical reservations about his own
opponent features, but concluded that they "consistently provided more discrimination
than the original RGB data."

HSD and YIQ color transformations were used in SRI's evaluation of the PHOENIX
color segmentation program [Laws 82]. Hue was mapped to the range 0 to 179, with red at
0 (and 180), green at 60, and blue at 120. Achromatic pixels (i.e., black, gray, and white)
were mapped to 255; this seldom makes a difference since pixels with exactly equal RGB .'"

components are exceedingly rare. A less exact test for achromaticity might work better (or
at least differently) for images with slight imbalances in their color strengths.

The I and Q color bands computed by Kender's formulas should theoretically be divided
* by two (and then shifted to a nonnegative range) if they are to be stored in 8-bit image 0

planes. (The SLICE program can handle image data with other pixel sizes, but eight
bits is convenient and seems to offer a reasonable dynamic range.) Most of this range is I
wasted, however, unless I is stretched by a factor of two and Q by a factor of four prior to
quantization, with clipping of extreme values. This greatly increases the usefulness of these
bands for segmenting natural imagery, although it could fail for scenes that contain large

regions of saturated colors.
Hue was generally not only the most useful color band in tie SRI evaluation, but also

the easiest to comprehend. The D and Y bands are essentially redundant; they do not
always segment identically, but the extra information is not worth the effort of comlptin"
both. Segmentation on the RGB bands was almost as good but more difficult to exp)lain:
the RGB bands were each nearly equivalent in segmenting power, and successive region
extractions seemed to jump randomly from one to another. (Differences in color are usiiallh
correlated with disparities in brightness, so an object that appears red might actually l)t . .

segmented on a different color band by the PHOENIX/SLICE algorithm.) The S band was
somewhat less useful, although decisions based on it were easy to explain. I and Q were ....

the least useful data bands, although they might have been essential if some of the other L .. .
seven data bands had not been available.

Overall, the HSI color system seems easiest to use, although the other color svstems
work well if explanations of each segmentation step are not needed. The RGB bands are so
similar to one another that the addition of a hue band can improve segmentation greatly.
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Pixels containing blue mixed with red (i.e., purples and violets) are rare even in hazy
mountain scenes, so there is seldom a problem with peaks in the hue histogram being split
between the bottom and top portions of the scale. Saturation is more likely to be the cause
of such instabilities; dark or shadowed image regions sometimes transform to very high 0
saturation values, indicating that segmentation on luminance should be done first or that
the instability of saturation should be considered during noise cleaning and other analyses.

Transformations of texture and other nonspectral data bands have not been evaluated, _ •
but simple sums and differences of the bands are the most separated in a multidimensional
histogram space and are thus most likely to improve segmenter performance. Texture bands 7
can also be combined with spectral bands in this way.
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Abstract

We examine the task of matching images of a scene when they are taken from

very different vantage points, when there is considerable scale change, and when

the image orientations are unknown. We use the linear structures in the scene

as the basis of our correspondence procedure. This paper considers the problem , *

of describing the linear structures in a manner that is invariant relative to the

variations that can occur among images, and discusses a method of finding the best

description of the linear structures.
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1. Introduction

When the human visual system is presented with two views of a single scene, it

determines the relative viewing positions of the two images and brings the latter into

correspondence. That is, the relationship of each image to the scene is understood

so that both images can be used as information sources for further processing. This

human ability functions well over a wide range of viewing positions and conditions.

It is this ability to place two very different views of a single scene into correspondence

that we address in this paper.

We should draw a distinction between two forms of the image correspondence

task. Traditionally, image registration has been a task undertaken by photogram- -. _...

metrists. One application involves registering an image to a map so that new in-

formation, present in the image, may be transferred to the map. Another is the

registration of the two images of a stereo pair so that disparity information can be L ..

extracted. In each of these tasks the two images, (or, in the first instance, the image

and the map), are similar in terms of both their viewing position and their scale.

The techniques used for registering the two images are point-based. A feature point L -W.

in one image is matched to the same feature point in the other image. In automated

systems this is achieved by selecting a small window about the feature in one image

and then correlating this window with one in the second image. If there is little

distortion or occlusion, this technique performs well; it has become the basis of

current automated image-registration systems.

The research reported herein was supported by the Defense Advanced Research Projects Agency
under Contract MDAgO3-83-C-0027 and by the National Aeronautics and Space Administration
under Contract NASA 9-16664. These contracts are monitored by the U.S. Army Engineer
Topographic Laboratory and by the Texas A&M Research Foundation for the Lyndon B. Johnson
Space Center. % .%
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The other form of the image correspondence task seeks to find the relationship

among views that differ widely in vantage point, scale, etc. We will refer to this as

the correspondence task, and use registration as the name for the form of the task

outlined above. In correspondence tasks there is significant distortion between the

images, the scale may differ and may not even be constant across a single image,

as is the case in oblique aerial imagery, occlusion is common, and the response

of the various sensors to a single feature differs greatly. Feature point matching, . .

as used in image registration, is prone to error. However, feature point matching

is not the only means of placing images into correspondence. It appears that the

human visual system makes use of nonpoint features, such as linear structures and "
L

extended landmarks. The aspects of our investigation reported here utilize the

linear structures of the images as the prime elements for achieving correspondence. *

In classifying the methods that could be employed to find linear structures in L-

images, we draw a distinction between techniques that use semantic information

and those that do not. If, for example, we apply a road operator to locate some

of the linear structures in an image, that operator has had built into it semantic

knowledge about the appearance of roads. We could proceed in this manner and

build comparable operators for all the scene objects that manifest themselves as

linear structures in images. Alternatively, we could seek to find the linear structures -

in an image without "identifying" their nature. In this case, we identify the image .--

behaviour interpreted by us as a linear structure without knowledge of the world

objects that gave rise to that structure. We choose this latter course because we

wish to establish the correspondence among images without first baving to identify

the scene objects.

2
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The correspondence task is carried out in three stages: we must find the linear

structures, we must build their descriptions and, finally, we must match these ,

descriptions. The details of the first stage is reported in Fischler and Wolf [1].

In this paper we explain how those procedures are employed in the correspondence

task. We present a detailed account of our implementation of the second stage- ,

namely, building structure descriptions - along with an outline showing how these

descriptions are to be used in the final matching stage.

S .0

2. Finding the Linear Structures

L
Descriptions of the semantically free procedures we use to find linear structures

in images can be found in Fischler and Wolf[lJ. In essence, these procedures first

find those pixels whose intensity levels are local maximums and minimums, then

cluster such pixels and identify the minimal spanning tree for each cluster. The

long paths in each of the spanning trees are found, whereupon these form the basis

for the linear structure reported by the procedures. The results of applying these L_

procedures are shown in Figures 1-4. Figure I is a natural-color oblique view of

the Eel river in northern California; Figure 2 is a vertical infrared view of the

same scene. Each was scanned through red, green, and blue filters; the results of

the procedures for finding linear structures in each of these separation images are

shown in Figures 3(a),3(c),3(e) and 4(a),4(c),4(e). In addition, the red, green, and

blue separation images were combined into images of hue, saturation, and intensity; L -

these were also processed to find the linear structures contained in them. The results

are shown in Figures 3(b),3(d),3(f) and 4(b),4(d),4(f).

3
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Figure 6. Linear Structure in the Composite Vertical Image

perspectives provide new information on which the linear-structure finders can

* act. The results of combining the linear structures extracted in all the various

perspectives are shown in Figures 3(h) and 4(h). Clearly, some of this structure

* comes from shading effects rather than from physical structure in the scene. We

need to separate the real physical structure from all else. ..-

6
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Flgure 7. Structure Descriptions - -

Figures 3(h) and 4(h) were obtained by adding the binary images produced by I.

the linear-structure finders. Consequently, in the combined image the values are

greater than one at those pixel positions where linear structure was seen in more

than one separation image. We treat this combined produce as a new "grey-level" -

image and, once again, apply the linear-structure finders. The results obtained from -

applying these procedures to Figures 3(h) and 4(h) are depicted in Figures 5(b) and

6(b). Figures 5(a) and 6(a) show an intermediate result before we cull short struc-

tures. For each of the structures in Figures 5(b) and 6(b), we calculate the average

"intensity", that is the average number of original separation images exhibiting that

linear structure. Figures 5(c),5(d),5(e),5(f),5(g),5(h) and 6(c),6(d),6(e),6(f),6(g),6(h)

reveal which segments would remain if we thresholded the 'intensity" values at 1, -.

1.5, 2, 2.5, 3, and 3.5, respectively.

We build a description of the linear structures from one of these images. The

image we use will depend on the final matching procedure. If we wish to attempt .- .. -

7
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to first match the "strongest" structures we use the image resulting from a high

*l threshold. On the other hand, if we wish to match the complete structure, the

unthresholded image would appear to be more appropriate. In the next section,

where we discuss the nature of the structure description, we use as examples %
I; . . .

the foregoing two extremes. In the case of the oblique image, we have used the

"intensity" image at a threshold of 3.5 (Figure 7a), while for the other case, the

vertical infrared image, we employ the unthresholded image (Figure 7b).

3. Describing the Linear Structures

The means used to describe a linear structure is not independent of the use to

:. which this description will be put. A description that makes it possible to reproduce

the structure is different from one that is sufficient to recognize it. As matching is

. our goal, we want a description that is general enough to be unaffected by noise in

the data, but specific enough to distinguish among structures that the human visual . .

system would classify as different. To the extent feasible, the description must be

invariant with respect to the variations that can occur in the data. Specifically, we

want the description to be independent of orientation, scale, and vantage point.

Our matching process will compare graphs of symbolic descriptions. We will use 0

as little metric information as possible. Consequently, the descriptions we employ

are symbolic ones, the primitive entities in each of which have qualities that are

themselves symbolic. For example, a primitive may be a straight-line segment whose

properties, such as an intersection angle (with some other primitive), have values

acute, near-colinear, etc. rather than a value in degrees.

8
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The primitives we have chosen to use are straight-line segments, arcs of circles,

and model-less, that is, data we prefer to describe as indescribable, data for which 5

the data set itself is the most apt description. The choice of these few primitives

stems from the observation that human description of linear structures seems to be

based on curves and straight lines - moreover on whether adjoining curves curve •

the same or opposite ways and whether adjoining pieces of the structure intersect

in particular ways. It is also a fact that humans find certain parts of the structure

too difficult to describe, and assign them some generic term like "wiggles". ....

Selection of the description primitives is only half the task of description

building. We need to be able to divide the linear structure into parts and assign

L 0.
a primitive to each. Usually the task of dividing the linear structure into parts

and describing each of these parts has been handled as two relatively independent

processes in which partitioning has preceded parts description. The difficulty with .-_-."_____
L 0 I

this approach is that some characterization of the breakpoints between parts has to

be found. Generally, this characterization is based only on local properties of the

linear structure, even though neighborhood information or local inhibition may be

employed so as to benefit from more broadly based information. In this respect, the

task of describing a structure in terms of its primitive parts appears to have been

replaced by the more difficult undertaking of describing breakpoints. Our concern

is to find the "bcst" description without first having to find the "best" subdivision. -

* Furthermore, we would like 'best" to be defined in terms of a global criterion rather

than local properties of the structure.

The advantage of defining best in terms of a local criterion is that many can-

didates for the definition of "best" spring to mind. The disadvantage of defining

9
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"best" in a global sense is the lack not only of likely definitions, but also of

computationally effective algorithms for finding this optimal solution. However, .

a description that views the data from a "gestalt" perspective seems more likely to

* be independent of image orientation, scale, and vantage point than one that applies

local data measures to define the optimal description. We define best description, as 0

the one that minimizes the number of symbols needed to encode the linear structure

in terms of our description primitives.

4. Minimal Encoding

The need to match data to description primitives is a central aspect of decision t. .

theory and pervades artificial intelligence research. It is a human's ability to

abstract data in terms of descriptive models that distinguishes human information

processing from its electronic namesake. Effective data abstraction is a balance

between two competing requirements. On the one hand a descriptive model must

fit the data adequately, while, on the other, the descriptive model must not be

needlessly complex. The criterion we use to select among competing descriptions is

based on the work of Georgeff and Wallace [21, in which the description considered

"best" is the one that can be encoded in the fewest symbols.

Suppose we wish to send data to some receiver so that he can recreate the

data to some preselected level of resolution. The sender and receiver have agreed

on a language for this communication that consists of a set of primitive elements.

*-' What is the most efficient encoding of the data; which message has the minimal .".

encoding length? Consider the example of sending a message that describes a linear

10
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structure. The latter can be thought of as a list of z and y coordinates. Let

us further suppose that the language of communication contains three primitives:

straight-line-segments, arcs-of-circles, and model-less-segments. Is it more efficient

to send the data as a single model-less-segment primitive, that is, as a list of (z,y). -- *.- --

coordinates, or might it be more efficient to describe the data by one or more of the I 0

other primitives, specifying sufficient information to describe how the actual data

differ from the primitives?

The message can be viewed as a list k 0

((Mi, Dl , (M2, D2), ..

t .6

where Al is the specification of the primitive, D the specification of the data in

terms of the selected primitive M. Let us consider an example. Suppose we have

a data set that approximates a straight-line segment. We could communicate this

by specifying a straight-line-segment primitive M, where M consists of a code for

the straight-line-segment primitive and parameters that specify the actual straight". .

line segment. These parameters might be the endpoints of the line. We also need

to specify the actual data in terms of this primitive M. The data specification D

might, for each data point, specify its coordinates as a distance along the line (from

its centre) and the perpendicular distance from the point to the line.

As the expected distances from the points to the line are small, we shall choose

an encoding of these distances so that the more probable of these, the smaller

distances, are encoded in fewer symbols (or bits) than those that are less likely. In L

the actual examples we shall describe later, we assumed a Gaussian distribution for

these perpendicular distances and we encoded optimally for that distribution. The

.. 11 L .. . ._
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optimal encoding length is just the negative logarithm of the probability, i.e., the

function denoted as "information" in information theory.

If we have a small number of data points fewer symbols may be needed to

communicate the data as a list of points; if, however, there is a large number of '

data points that exhibit behaviour consistent with a primitive, it will probably be

cheaper to encode this data set as the primitive and then specify the data in terms

of that primitive. Of course we are not just comparing the encoding of all the data

* with either one primitive or another. It might be more efficient to encode the data

* as a few primitives, with each primitive "explaining" a different part of the data.

The encoding we select is the one that is globally best in explaining all the data.

A way of viewing the message form outlined above,

((MDI),-(M 2 ,,D2 ),.-.)

. - . ,

is to look upon Al as the overhead of introducing another primitive while D

represents the quality of the fit between the data and the primitive. Of course, since

different primitives have different M's, M also weights each primitive's efficiencyL

for encoding data. In comparing message length we are balancing the complexity

introduced by adding an extra primitive to the description of the data against the

* quality of fit between the assembled primitives and the data values.0

Although the above discussion focused on encoding messages for communica-

tion, we use minimal encoding length as the criterion for finding the best description

of a linear structure - without any interest on our part in actually transmitting the

data. This of course means that we only have to decide how many symbols would

be used if we were to encode the linear structure in a particular manner rather

12
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than actually doing the encoding. We can use the results of information theory to

determine the optimal encoding length without even having to understand what . . .

the optimal encoding scheme is. That is, information theory gives us an operator,

or a measure, that we can apply to a description to determine how many symbols

we would need' if we were to encode it optimally, without any consideration of the ,

actual encoding scheme and without the need to do the encoding.

Let us consider our application, encoding linear structures in terms of three

primitives: straight-line-segments, arcs-of-circles, amd model-less-segments. We will .. .

assume that the data are specified on a NxM grid, and that the noise in the data will

induce a Gaussian distribution of the data points around the generating primitive.

Given that all grid points are equally likely, the cost in bits of encoding a grid point L _..

is logN + logM, (log is to the base 2). Now consider the three alternative ways of

encoding r data points (using one primitive only).

Model-less-segment:

We need a code to specify that the primitive being used is the model-less-

segment. As there are only three primitives, and we assume that they are all equally

likely, it costs log3 bits to specify the code. Specification of the data in terms of

this primitive will require in turn that we specify r grid coordinates, that is, a cost

of r(logN + logM) bits.

Straight-line-segment:

We can specify the straight-line-segment primitive by specifying the endpoints

OL of the line segment. This costs 2(logN + logM) bits. In addition, the cost of

specifying the code for this primitive is log3. To specify the data in terms of

this primitive we will, for each data point, specify a distance along the line and

13
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the perpendicular distance from the point to the line. If the line segment is of

length I (in grid units) then, to specify r distances, if we assume that all distances

are equally likely, will cost rlogl bits. If it is also assumed that the data points .-- -:-'

have a Gaussian distribution about the primitive model, the cost of specifying r - -

perpendicular distances is ..

tpts Viiu-
where d is the perpendicular distance from the point to the line, and o the standard L .

deviation associated with the distribution. When the above expression is expanded,

the sum over the d's is just the sum of the residuals squared that is calculated when

the line is fitted to the data by least-squares methods. .' . .

Ares-of-circles:

We specify, the arcs-of-circles primitive by specifying the endpoints of the arc

and one other point on the arc. This costs 3(logN + IogM) bits, while the cost of

specifying the code for this primitive is log3 bits. To specify the data we use the

same scheme as we did for the straight-line-segment primitive.

Using these costing functions and a search algorithm that examines the various

ways for partitioning a linear structure into primitives, we find the best description

of that. structure.
* 0

5. Results

The results of using the foregoing procedure on some of the linear segments

found in Figures I and 2, (and shown in Figures 7(a) and 7(b)), are depicted in the -'-'....-'. -

remaining panes of Figure 7. From Figures 7(a) and 7(b) we have selected some
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linear structures. The selected structures, which form the main course of the Eel

river, are shown in Figures 7(c) and 7(d). Our interest is in determining whether the

description built from one image is the same as that from the other. Of course, in

the final version of the structure builder we would need to handle all the segments

simultaneously, but this will necessitate considerable improvement in the search

algorithm to keep computational costs down to a reasonable level.

Figures 7(e) and 7(f) show the primitives returned. The arc of circles are shown L

as full circles to improve readability. In Figures 7(g) and 7(h) the primitives have

been overlaid on the data to show the quality of fit. In assessing these results,

one should keep the purpose of this description in mind. We want to extract a

description of the linear structure in terms of lines and curves, in terms of the

manner in which parts intersect (acute angles, near-colinearity, etc.), in terms of

relative curvature (tight curves, gentle curves, and the like), and in terms of the ....

sequencing of parts in the structure. Given that the two images are viewed from very

different vantage points, that the scale is quite different (not even constant in one

image), that one image was taken in the infrared band and one in the visible band, Asa

that the images were taken one-and-a-half years apart during different seasons,

and that no semantic information was used in the processing, the closeness of the

resulting descriptions is noteworthy. This points to the usefulness of processing

the data in the above manner; namely, the method of finding the linear structures;

the primitives used to encode the structure; and the encoding-length measure as a

criterion for best description.

Figure 7 shows the results obtained with real data. Similar results have been

obtained in experiments that employ other real data sets. Justification of the
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method, however, requires further extensive experimentation. To better understand

(fie behavior of the description builder we include an example using synthetic data. L

The data points are shown in Figures 8(a) and 8(b). In Figure 8(b) one extra data .--

point has been added to those shown in Figure 8(a). The resulting descriptions are

shown in Figures 8(c) and 8(d) and overlaid on the data in Figures 8(e) and 8(f).

* The addition of one critical point alters the description, an effect not unknown in

the human visual system. The resulting descriptions seem to match those perceived

by humans when they are presented with Figures 8(a) and 8(b). While we could not0

claim that minimal encoding is the criterion used by the human visual system for

description building, we note that this criterion conforms to the type of behavior

we would want to achieve if we were modeling the visual system. Of course, if the

resultant description is sensitive to every addition or deletion of a data point it is of

16 __
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little use. In general, the minimal-encoding-length description appears to be stable

with respect to data changes, except when "critical" points are added or deleted. 0 *

6. Matching the Descriptions

If the description we obtain from the description builder characterizes the

data and is invariant with respect to orientation, scale, and vantage point, the

burden of matching descriptions is lightened considerably. It is our intent to match

descriptions at the symbolic level, to represent the descriptions found by minimal

encoding as graphs of symbolic entities, and to match those graphs on the basis . ........

of their structure. Of course, it is unlikely that the graphs derived from different

images will match perfectly. Nevertheless, from a prospective match we can find

correspondences in the original images, and calculate the camera transformation

between the images.

This procedure allows data in one image to be transformed into the other. It L

means that we can transform a linear structure found in one image into the other

image. For those parts of the graph where there is a mismatch we can ask the

question: how would the linear structure that is associated with the mismatch be

encoded if it were first transformed into the other image and then encoded? In this '""

manner we can attempt to explain the graph mismatches. If we cannot explain the

mismatches we should consider another match of the graphs. Through this process

of hypothesis and verification, we seek to avoid acceptance of a transformation that

does not explain "all" the data.

17 0 0

* * *.. .1.. .......... ......-'. .- ." . .. . . .*..*..-. -- '.,.......... .... - .-. . " '.'.-,. ..... ,

-.. r,. . _, ., .. ._. . - ... - •.** ... ..._ ._•• - . .o,.-. . ..-... ... . . ... ,_. ." .... . -..-..



Conclusion

Having found the linear structures in an image, we are faced with two major .

tasks before we can use these structures to find the correspondence between different

images of a scene. We need to be able to describe these structures in a way that is

independent of the variations that can occur between the images, and we need to 0

be able to match these descriptions to find the relationship between the images.

In considering structure description we show that the usual technique of divid-

ing the structure into parts and then describing the latter can be replaced by a

procedure that finds the "best" description of the data on the basis of a global

view of that data. This technique simultaneously divides the structure into parts

and describes them. "Best" is defined as the cheapest encoding of the data when

we consider the trade-off between the quality of explanation of the data and the

complexity of that explanation.

This approach produces a description of linear structures that appears rela-

tively insensitive to the vantage point, scale, and orientation of the original images.
It may prove to be a description that enables easy matching, and hence an effective

approach to solving the problem of image-to-image correspondence.
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